Interchange Of Limiting Operations
In mathematics, the study of interchange of limiting operations is one of the major concerns of mathematical analysis, in that two given limiting operations, say ''L'' and ''M'', cannot be ''assumed'' to give the same result when applied in either order. One of the historical sources for this theory is the study of trigonometric series. Formulation In symbols, the assumption :''LM'' = ''ML'', where the left-hand side means that ''M'' is applied first, then ''L'', and ''vice versa'' on the right-hand side, is not a valid equation between mathematical operators, under all circumstances and for all operands. An algebraist would say that the operations do not commute. The approach taken in analysis is somewhat different. Conclusions that assume limiting operations do 'commute' are called ''formal''. The analyst tries to delineate conditions under which such conclusions are valid; in other words mathematical rigour is established by the specification of some set of sufficient con ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fubini's Theorem
In mathematical analysis, Fubini's theorem characterizes the conditions under which it is possible to compute a double integral by using an iterated integral. It was introduced by Guido Fubini in 1907. The theorem states that if a function is Lebesgue integrable on a rectangle X\times Y, then one can evaluate the double integral as an iterated integral:\, \iint\limits_ f(x,y)\,\text(x,y) = \int_X\left(\int_Y f(x,y)\,\texty\right)\textx=\int_Y\left(\int_X f(x,y) \, \textx \right) \texty. This formula is generally not true for the Riemann integral, but it is true if the function is continuous on the rectangle. In multivariable calculus, this weaker result is sometimes also called Fubini's theorem, although it was already known by Leonhard Euler. Tonelli's theorem, introduced by Leonida Tonelli in 1909, is similar but is applied to a non-negative measurable function rather than to an integrable function over its domain. The Fubini and Tonelli theorems are usually combined and for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vitali Convergence Theorem
In real analysis and measure theory, the Vitali convergence theorem, named after the Italian mathematician Giuseppe Vitali, is a generalization of the better-known dominated convergence theorem of Henri Lebesgue. It is a characterization of the convergence in ''Lp'' in terms of convergence in measure and a condition related to uniform integrability. Preliminary definitions Let (X,\mathcal,\mu) be a measure space A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that ..., i.e. \mu : \mathcal\to ,\infty/math> is a set function such that \mu(\emptyset)=0 and \mu is countably-additive. All functions considered in the sequel will be functions f:X\to \mathbb, where \mathbb=\R or \mathbb. We adopt the following definitions according to Bogachev's terminology. * A set of functions \mathca ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere pointwise convergent to a function then the sequence converges in L_1 to its pointwise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Schwarz's Theorem
In mathematics, the symmetry of second derivatives (also called the equality of mixed partials) is the fact that exchanging the order of partial derivatives of a multivariate function :f\left(x_1,\, x_2,\, \ldots,\, x_n\right) does not change the result if some continuity conditions are satisfied (see below); that is, the second-order partial derivatives satisfy the identities :\frac \left( \frac \right) \ = \ \frac \left( \frac \right). In other words, the matrix of the second-order partial derivatives, known as the Hessian matrix, is a symmetric matrix. Sufficient conditions for the symmetry to hold are given by Schwarz's theorem, also called Clairaut's theorem or Young's theorem. In the context of partial differential equations, it is called the Schwarz integrability condition. Formal expressions of symmetry In symbols, the symmetry may be expressed as: :\frac \left( \frac \right) \ = \ \frac \left( \frac \right) \qquad\text\qquad \frac \ =\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mean Value Theorem
In mathematics, the mean value theorem (or Lagrange's mean value theorem) states, roughly, that for a given planar arc (geometry), arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant line, secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval (mathematics), interval starting from local hypotheses about derivatives at points of the interval. History A special case of this theorem for inverse interpolation of the sine was first described by Parameshvara (1380–1460), from the Kerala School of Astronomy and Mathematics in India, in his commentaries on Govindasvāmi and Bhāskara II. A restricted form of the theorem was proved by Michel Rolle in 1691; the result was what is now known as Rolle's theorem, and was proved only for polynomials, without the techniques of calculus. The mean value theorem in its modern for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
McGraw Hill
McGraw Hill is an American education science company that provides educational content, software, and services for students and educators across various levels—from K-12 to higher education and professional settings. They produce textbooks, digital learning tools, and adaptive technology to enhance learning experiences and outcomes. It is one of the "big three" educational publishers along with Houghton Mifflin Harcourt and Pearson Education. McGraw Hill also publishes reference and trade publications for the medical, business, and engineering professions. Formerly a division of The McGraw Hill Companies (later renamed McGraw Hill Financial, now S&P Global), McGraw Hill Education was divested and acquired by Apollo Global Management in March 2013 for $2.4 billion in cash. McGraw Hill was sold in 2021 to Platinum Equity for $4.5 billion. History McGraw Hill was founded in 1888, when James H. McGraw, co-founder of McGraw Hill, purchased the ''American Journal of Railwa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moore-Osgood Theorem
In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form : \lim_ \lim_ a_ = \lim_ \left( \lim_ a_ \right), : \lim_ \lim_ f(x, y) = \lim_ \left( \lim_ f(x, y) \right), or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value depends only on the other variable, and then one takes the limit as the other variable approaches some number. Types of iterated limits This section introduces definitions of iterated limits in two variables. These may generalize easily to multiple variables. Iterated limit of sequence For each n, m \in \mathbf, let a_ \in \mathbf be a real double sequence. Then there are two forms of iterated limits, namely : \lim_ \lim_ a_ \qquad \text \qquad \lim_ \lim_ a_. For example, let :a_ = \frac. Then : ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Federico Cafiero
Federico Cafiero (24 May 1914 – 7 May 1980) was an Italian mathematician known for his contributions in real analysis, measure theory, measure and Integral (mathematics), integration theory, and in the theory of ordinary differential equations. In particular, generalizing the Vitali convergence theorem, the Fichera convergence theorem and previous results of Vladimir Mikhailovich Dubrovskii, he proved a necessary and sufficient condition for the passage to the Limit (mathematics), limit under the sign of Integral (mathematics), integral: this result is, in some sense, definitive. In the field of ordinary differential equations, he studied existence and uniqueness problems under very general hypotheses for the left member of the given first-order equation, developing an important approximation method and proving a fundamental uniqueness theorem. Life and academic career Cafiero was born in Riposto, Province of Catania, on May 24, 1914. He obtained his Laurea in mathematics, cum ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dominated Convergence Theorem
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere pointwise convergent to a function then the sequence converges in L_1 to its pointwise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration. In addition to its frequent appearance in mathematical analysis and partial differential equations, it is widely used in probability theory, since it gives a sufficient condition for the convergence of expected values of random variables. Statement Lebesgue's dominated convergence theorem. Let (f_n) be a sequence of complex-valued measurable functions on a measure space . Suppose that t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |