Higher-order Logics
   HOME





Higher-order Logics
In mathematics and logic, a higher-order logic (abbreviated HOL) is a form of logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expressive, but their model-theoretic properties are less well-behaved than those of first-order logic. The term "higher-order logic" is commonly used to mean higher-order simple predicate logic. Here "simple" indicates that the underlying type theory is the ''theory of simple types'', also called the ''simple theory of types''. Leon Chwistek and Frank P. Ramsey proposed this as a simplification of ''ramified theory of types'' specified in the ''Principia Mathematica'' by Alfred North Whitehead and Bertrand Russell. ''Simple types'' is sometimes also meant to exclude polymorphic and dependent types. Quantification scope First-order logic quantifies only variables that range over individuals; ''second-order logic'', also quantifi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Theory Of Types
The type theory was initially created to avoid paradoxes in a variety of formal logics and rewrite systems. Later, type theory referred to a class of formal systems, some of which can serve as alternatives to naive set theory as a foundation for all mathematics. It has been tied to formal mathematics since '' Principia Mathematica'' to today's proof assistants. 1900–1927 Origin of Russell's theory of types In a letter to Gottlob Frege (1902), Bertrand Russell announced his discovery of the paradox in Frege's Begriffsschrift. Frege promptly responded, acknowledging the problem and proposing a solution in a technical discussion of "levels". To quote Frege: Incidentally, it seems to me that the expression "a predicate is predicated of itself" is not exact. A predicate is as a rule a first-level function, and this function requires an object as argument and cannot have itself as argument (subject). Therefore I would prefer to say "a concept is predicated of its own e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alonzo Church
Alonzo Church (June 14, 1903 – August 11, 1995) was an American computer scientist, mathematician, logician, and philosopher who made major contributions to mathematical logic and the foundations of theoretical computer science. He is best known for the lambda calculus, the Church–Turing thesis, proving the unsolvability of the ''Entscheidungsproblem'' ("decision problem"), the Frege–Church ontology, and the Church–Rosser theorem. Alongside his doctoral student Alan Turing, Church is considered one of the founders of computer science. Life Alonzo Church was born on June 14, 1903, in Washington, D.C., where his father, Samuel Robbins Church, was a justice of the peace and the judge of the Municipal Court for the District of Columbia. He was the grandson of Alonzo Webster Church (1829–1909), United States Senate Librarian from 1881 to 1901, and great-grandson of Alonzo Church, a professor of Mathematics and Astronomy and 6th President of the University of Ge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Many-sorted First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aleph Nought
In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ). The smallest cardinality of an infinite set is that of the natural numbers, denoted by \aleph_0 (read ''aleph-nought'', ''aleph-zero'', or ''aleph-null''); the next larger cardinality of a well-order, well-ordered set is \aleph_1, then \aleph_2, then \aleph_3, and so on. Continuing in this manner, it is possible to define an infinite cardinal number \aleph_ for every ordinal number \alpha, as described below. The concept and notation are due to Georg Cantor, who defined the notion of cardinality and realized that Georg Cantor's first set theory article, infinite sets can have different cardinalities. The aleph numbers differ from the Extended real number line, infinity (\infty) commonly found ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jouko Väänänen
Jouko Antero Väänänen (born September 3, 1950 in Rovaniemi, Lapland) is a Finnish mathematical logician known for his contributions to set theory,J. VäänänenSecond order logic or set theory? Bulletin of Symbolic Logic, 18(1), 91-121, 2012. model theory, logic and foundations of mathematics. He served as the vice-rector at the University of Helsinki, and a professor of mathematics at the University of Helsinki, as well as a professor of mathematical logic and foundations of mathematics at the University of Amsterdam. He completed his PhD at the University of Manchester under the supervision of Peter Aczel in 1977 with the PhD thesis entitled "Applications of set theory to generalized quantifiers". He was elected to the Finnish Academy of Science and Letters in 2002. He served as a member of the Senate of the University of Helsinki from 2004 to 2006 and the Treasurer of the European Mathematical Society The European Mathematical Society (EMS) is a European organization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Menachem Magidor
Menachem Magidor (; born January 24, 1946) is an Israeli mathematician who specializes in mathematical logic, in particular set theory. He served as president of the Hebrew University of Jerusalem, was president of the Association for Symbolic Logic from 1996 to 1998 and as president of the Division for Logic, Methodology and Philosophy of Science and Technology of the International Union for History and Philosophy of Science (DLMPST/IUHPS) from 2016 to 2019. In 2016 he was elected an honorary foreign member of the American Academy of Arts and Sciences. In 2018 he received the Solomon Bublick Award. Biography Menachem Magidor was born in Petah Tikva, Israel. He received his Ph.D. in 1973 from the Hebrew University of Jerusalem. His thesis, ''On Super Compact Cardinals'', was written under the supervision of Azriel Lévy. He served as president of the Hebrew University of Jerusalem from 1997 to 2009, following Hanoch Gutfreund and succeeded by Menachem Ben-Sasson. The Ox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measurable Cardinal
In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure (mathematics), measure on a cardinal ''κ'', or more generally on any set. For a cardinal ''κ'', it can be described as a subdivision of all of its subsets into large and small sets such that ''κ'' itself is large, ∅ and all singleton (mathematics), singletons (with ''α'' ∈ ''κ'') are small, set complement, complements of small sets are large and vice versa. The intersection of fewer than ''κ'' large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanisław Ulam in 1930. Definition Formally, a measurable cardinal is an uncountable cardinal number ''κ'' such that there exists a ''κ''-additive, non-trivial, 0-1-valued measure (mathematics), measure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Löwenheim Number
In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds. They are named after Leopold Löwenheim, who proved that these exist for a very broad class of logics. Abstract logic An abstract logic, for the purpose of Löwenheim numbers, consists of: * A collection of "sentences"; * A collection of "models", each of which is assigned a cardinality; * A relation between sentences and models that says that a certain sentence is "satisfied" by a particular model. The theorem does not require any particular properties of the sentences or models, or of the satisfaction relation, and they may not be the same as in ordinary first-order logic. It thus applies to a very broad collection of logics, including first-order logic, higher-order logics, and infinitary logics. Definition The Löwenheim number of a logic ''L'' is the smallest cardinal ''κ'' such that if an arbitrary sentence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Proof Calculus
In mathematical logic, a proof calculus or a proof system is built to prove statements. Overview A proof system includes the components: * Formal language: The set ''L'' of formulas admitted by the system, for example, propositional logic or first-order logic. * Rules of inference: List of rules that can be employed to prove theorems from axioms and theorems. * Axioms: Formulas in ''L'' assumed to be valid. All theorems are derived from axioms. A formal proof of a well-formed formula in a proof system is a set of axioms and rules of inference of proof system that infers that the well-formed formula is a theorem of proof system. Usually a given proof calculus encompasses more than a single particular formal system, since many proof calculi are under-determined and can be used for radically different logics. For example, a paradigmatic case is the sequent calculus, which can be used to express the consequence relations of both intuitionistic logic and relevance logic. Thus, l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gödel's Completeness Theorem
Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantics, semantic truth and syntactic Provability logic, provability in first-order logic. The completeness theorem applies to any first-order Theory (mathematical logic), theory: If ''T'' is such a theory, and φ is a sentence (in the same language) and every model of ''T'' is a model of φ, then there is a (first-order) proof of φ using the statements of ''T'' as axioms. One sometimes says this as "anything true in all models is provable". (This does not contradict Gödel's incompleteness theorem, which is about a formula φu that is unprovable in a certain theory ''T'' but true in the "standard" model of the natural numbers: φu is false in some other, "non-standard" models of ''T''.) The completeness theorem makes a close link between model theory, which deals with what is true in different models, and proof theory, which studies what can be formally prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]