Helium Star
A helium star is a class O or B star (blue), which has extraordinarily strong helium lines and weaker than normal hydrogen lines, indicating strong stellar winds and a mass loss of the outer envelope. '' Extreme helium stars'' (EHe) entirely lack hydrogen in their spectra. Pure helium stars lie on or near a helium main sequence, analogous to the main sequence formed by the more common hydrogen stars. Terminology Previously, a ''helium star'' was a synonym for a B-type star, but this use of for the term is considered obsolete. A ''helium star'' is also a term for a hypothetical star that could occur if two helium white dwarfs with a combined mass of at least 0.5 solar masses merge and subsequently start nuclear fusion of helium, with a lifetime of a few hundred million years. This may only happen if these two binary masses share the same type of envelope phase. It is believed this is the origin of the extreme helium stars. Description The helium main sequence is a line in th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stellar Classification
In astronomy, stellar classification is the classification of stars based on their stellar spectrum, spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a Prism (optics), prism or diffraction grating into a spectrum exhibiting the Continuum (spectrum), rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the cool ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metallicity
In astronomy, metallicity is the Abundance of the chemical elements, abundance of Chemical element, elements present in an object that are heavier than hydrogen and helium. Most of the normal currently detectable (i.e. non-Dark matter, dark) matter in the universe is either hydrogen or helium, and astronomers use the word ''metals'' as convenient shorthand for ''all elements except hydrogen and helium''. This word-use is distinct from the conventional chemical or physical definition of a metal as an electrically conducting element. Stars and nebulae with relatively high abundances of heavier elements are called ''metal-rich'' when discussing metallicity, even though many of those elements are called ''Nonmetal (chemistry), nonmetals'' in chemistry. Metals in early spectroscopy In 1802, William Hyde WollastonMelvyn C. UsselmanWilliam Hyde WollastonEncyclopædia Britannica, retrieved 31 March 2013 noted the appearance of a number of dark features in the solar spectrum. In 1814, Jo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Star Types
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
R Coronae Borealis Variable
An R Coronae Borealis variable (abbreviated RCB, R CrB) is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation (a few tenths of a magnitude), and one irregular, unpredictably-sudden fading by 1 to 9 magnitudes. The prototype star R Coronae Borealis was discovered by the England, English amateur astronomy, amateur astronomer Edward Pigott in 1795, who first observed the enigmatic fadings of the star. Only about 150 RCB stars are currently known in our Galaxy while up to 1000 were expected, making this class a very rare kind of star. It is increasingly suspected that R Coronae Borealis (RCB) stars – rare hydrogen-deficient and carbon-rich supergiant stars – are the product of mergers of white-dwarfs in the intermediary mass regime (total mass between 0.6 and 1.2 ). The fading is caused by condensation of carbon to soot, making the star fade in visible light while measurements in infrared light exhibit no real luminosity decrease. R Coron ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carbon Star
A carbon star (C-type star) is typically an asymptotic giant branch star, a luminous red giant, whose Stellar atmosphere, atmosphere contains more carbon than oxygen. The two elements combine in the upper layers of the star, forming carbon monoxide, which consumes most of the oxygen in the atmosphere, leaving carbon atoms free to form other carbon compounds, giving the star a "sooty" atmosphere and a strikingly Ruby (color), ruby red appearance. There are also some dwarf and supergiant carbon stars, with the more common giant stars sometimes being called classical carbon stars to distinguish them. In most stars (such as the Sun), the atmosphere is richer in oxygen than carbon. Ordinary stars not exhibiting the characteristics of carbon stars but cool enough to form carbon monoxide are therefore called oxygen-rich stars. Carbon stars have quite distinctive stellar classification, spectral characteristics, and they were first recognized by their spectra by Angelo Secchi in the 186 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nature (journal)
''Nature'' is a British weekly scientific journal founded and based in London, England. As a multidisciplinary publication, ''Nature'' features Peer review, peer-reviewed research from a variety of academic disciplines, mainly in science and technology. It has core editorial offices across the United States, continental Europe, and Asia under the international scientific publishing company Springer Nature. ''Nature'' was one of the world's most cited scientific journals by the Science Edition of the 2022 ''Journal Citation Reports'' (with an ascribed impact factor of 50.5), making it one of the world's most-read and most prestigious academic journals. , it claimed an online readership of about three million unique readers per month. Founded in the autumn of 1869, ''Nature'' was first circulated by Norman Lockyer and Alexander MacMillan (publisher), Alexander MacMillan as a public forum for scientific innovations. The mid-20th century facilitated an editorial expansion for the j ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
V445 Puppis
V445 Puppis was a nova in the constellation Puppis. It was discovered by Kazuyoshi Kanatsu of Matsue, Shimane, Japan, who recorded a peak magnitude of on December 18, 2000. The nova was reported by Taichi Kato of Kyoto University in the International Astronomical Union circular 7552, issued on December 30, 2000. The location of this nova coincided with a magnitude 13.1 star that had been photographed in 1967. The proper motion of this star was measured as -4.7 mas/yr in right ascension and +6.4 mas/yr in declination, with a standard error of 4 mas/yr. Examination of the optical spectrum of this nova showed absorption lines of calcium (Ca I), sodium (Na I) and singly ionized iron (Fe II). The initial spectrum was deficient in hydrogen and did not match those typical of other nova types. The infrared spectrum measured on January 31 showed a featureless continuum that decreased with increasing wavelength. This is consistent with emission from heated dust and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Galactic Astronomy
Galactic astronomy is the study of the Milky Way galaxy and all its contents. This is in contrast to extragalactic astronomy, which is the study of everything outside our galaxy, including all other galaxies. Galactic astronomy should not be confused with galaxy formation and evolution, which is the general study of galaxy, galaxies, their formation, structure, components, dynamics, interactions, and the range of forms they take. The Milky Way galaxy, where the Solar System is located, is in many ways the best-studied galaxy, although important parts of it are obscured from view in visible wavelengths by regions of cosmic dust. The development of radio astronomy, infrared astronomy and submillimetre astronomy in the 20th century allowed the gas and dust of the Milky Way to be mapped for the first time. Subcategories A standard set of subcategories is used by astronomical journals to split up the subject of Galactic Astronomy: # abundances – the study of the location of eleme ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
NGC 1309
NGC 1309 is a spiral galaxy located approximately 120 million light-years away, appearing in the constellation Eridanus. It was discovered by German-British astronomer William Herschel on 3 October 1785. NGC 1309 is about 75,000 light-years across, and is about 3/4s the width of the Milky Way. Its shape is classified as SA(s)bc, meaning that it has moderately wound spiral arms and no ring. Bright blue areas of star formation can be seen in the spiral arms, while the yellowish central nucleus contains older-population stars. NGC 1309 is one of over 200 members of the Eridanus Group of galaxies. Supernova 2002fk SN 2002fk was discovered jointly by Reiki Kushida of the Yatsugatake South Base Observatory, Nagano Prefecture, Japan; and Jun-jie Wang and Yu-Lei Qiu of the Beijing Astronomical Observatory on 17 Sept 2002. When it was discovered it was magnitude ~15.0; it was estimated to have reached maximum magnitude of ~13.0 before fading away. It was a Type Ia supernova (i.e., the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type Iax Supernova
A type Iax supernova is a rare subtype of type Ia supernova, which leaves behind a remnant star, known as zombie star, rather than completely dispersing the white dwarf. Type Iax supernovae are similar to type Ia, but have a lower ejection velocity and lower luminosity. Type Iax supernovae may occur at a rate between 5 and 30 percent of the Ia supernova rate. As of October 2014, thirty supernovae had been identified in this category. In a binary system consisting of a white dwarf and a companion star, the white dwarf strips away material from its companion. Normally the white dwarf would eventually reach a critical mass, and fusion reactions would make it explode and completely dissipate it, but in a Type Iax supernova, only a part of the dwarf's mass is lost. Candidate observed instances Supernova SN 2012Z in the galaxy NGC 1309 is thought to be of type Iax, and was discovered by Brad Cenko, Weidong Li, and Alex Filippenko using the Katzman Automatic Imaging Telesco ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the ''progenitor'', either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months. The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. The supernova remnant, remnants of more recent supernovae have been found, and observations of supernovae in other galaxies suggest they occur in the Milky Way on average about three times every century. A supernova in the Milky Way would almost certainly be observable through mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |