Heat Kernel
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature (typically zero), such that an initial unit of heat energy is placed at a point at time . Definition ] The most well-known heat kernel is the heat kernel of -dimensional Euclidean space , which has the form of a time-varying Gaussian function, K(t,x,y) = \frac \exp\left(-\frac\right), which is defined for all x,y\in\mathbb^d and t > 0. This solves the heat equation \left\{ \begin{aligned} & \frac{\partial K}{\partial t}(t,x,y) = \Delta_x K(t,x,y)\\ & \lim_{t \to 0} K(t,x,y) = \delta(x-y) = \delta_x(y) \end{aligned} ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. Theta functions are parametrized by points in a tube domain inside a complex Lagrangian Grassmannian, namely the Siegel upper half space. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semigroup
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative internal binary operation on it. The binary operation of a semigroup is most often denoted multiplicatively (just notation, not necessarily the elementary arithmetic multiplication): , or simply ''xy'', denotes the result of applying the semigroup operation to the ordered pair . Associativity is formally expressed as that for all ''x'', ''y'' and ''z'' in the semigroup. Semigroups may be considered a special case of magmas, where the operation is associative, or as a generalization of groups, without requiring the existence of an identity element or inverses. As in the case of groups or magmas, the semigroup operation need not be commutative, so is not necessarily equal to ; a well-known example of an operation that is associative but non-commutative is matrix multiplication. If the semigroup operation is commutative, then the semigroup is called a ''commutative semigroup' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Mapping Theorem
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy \, x \, y\, \ \leq \, x\, \, \, y\, \quad \text x, y \in A. This ensures that the multiplication operation is continuous with respect to the metric topology. A Banach algebra is called ''unital'' if it has an identity element for the multiplication whose norm is 1, and ''commutative'' if its multiplication is commutative. Any Banach algebra A (whether it is unital or not) can be embedded isometrically into a unital Banach algebra A_e so as to form a closed ideal of A_e. Often one assumes ''a priori'' that the algebra under consideration is unital because one can develop much of the theory by considering A_e and then a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integral Transform
In mathematics, an integral transform is a type of transform that maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''. General form An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a function ''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, that is called the kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Theorem
In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized (that is, represented as a diagonal matrix in some basis). This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective. Examples of operators to which the spectral theorem applies are self-adjoint operators or more generally normal operator ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Selfadjoint Operator
In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a^*). Definition Let \mathcal be a *-algebra. An element a \in \mathcal is called self-adjoint if The set of self-adjoint elements is referred to as A subset \mathcal \subseteq \mathcal that is closed under the involution *, i.e. \mathcal = \mathcal^*, is called A special case of particular importance is the case where \mathcal is a complete normed *-algebra, that satisfies the C*-identity (\left\, a^*a \right\, = \left\, a \right\, ^2 \ \forall a \in \mathcal), which is called a C*-algebra. Especially in the older literature on *-algebras and C*-algebras, such elements are often called Because of that the notations \mathcal_h, \mathcal_H or H(\mathcal) for the set of self-adjoint elements are also sometimes used, even in the more recent literature. Examples * Each positive element of a C*-algebra is * For each element a of a *-algebra, the elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Operator
In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact closure in Y). Such an operator is necessarily a bounded operator, and so continuous. Some authors require that X,Y are Banach, but the definition can be extended to more general spaces. Any bounded operator ''T'' that has finite rank is a compact operator; indeed, the class of compact operators is a natural generalization of the class of finite-rank operators in an infinite-dimensional setting. When ''Y'' is a Hilbert space, it is true that any compact operator is a limit of finite-rank operators, so that the class of compact operators can be defined alternatively as the closure of the set of finite-rank operators in the norm topology. Whether this was true in general for Banach spaces (the approximation property) was an unsolved que ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lp Space
In mathematics, the spaces are function spaces defined using a natural generalization of the -norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue , although according to the Bourbaki group they were first introduced by Frigyes Riesz . spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, economics, finance, engineering, and other disciplines. Preliminaries The -norm in finite dimensions The Euclidean length of a vector x = (x_1, x_2, \dots, x_n) in the n-dimensional real vector space \Reals^n is given by the Euclidean norm: \, x\, _2 = \left(^2 + ^2 + \dotsb + ^2\right)^. The Euclidean distance between two points x and y is the length \, x - y\, _2 of the straight line b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, this condition can be written as Df = \lambda f for some scalar eigenvalue \lambda. The solutions to this equation may also be subject to boundary conditions that limit the allowable eigenvalues and eigenfunctions. An eigenfunction is a type of eigenvector. Eigenfunctions In general, an eigenvector of a linear operator ''D'' defined on some vector space is a nonzero vector in the domain of ''D'' that, when ''D'' acts upon it, is simply scaled by some scalar value called an eigenvalue. In the special case where ''D'' is defined on a function space, the eigenvectors are referred to as eigenfunctions. That is, a function ''f'' is an eigenfunction of ''D'' if it satisfies the equation where λ is a scalar. The solutions to Equation may also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Laplacian
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Eigenvalue
In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a constant factor \lambda when the linear transformation is applied to it: T\mathbf v=\lambda \mathbf v. The corresponding eigenvalue, characteristic value, or characteristic root is the multiplying factor \lambda (possibly a negative or complex number). Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. A linear transformation's eigenvectors are those vectors that are only stretched or shrunk, with neither rotation nor shear. The corresponding eigenvalue is the factor by which an eigenvector is stretched or shrunk. If the eigenvalue is negative, the eigenvector's direction is reversed. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |