Half Circle Distribution
   HOME





Half Circle Distribution
The Wigner semicircle distribution, named after the physicist Eugene Wigner, is the probability distribution defined on the domain minus;''R'', ''R''whose probability density function ''f'' is a scaled semicircle, i.e. a semi-ellipse, centered at (0, 0): :f(x)=\sqrt\, for −''R'' ≤ ''x'' ≤ ''R'', and ''f''(''x'') = 0 if '', x, '' > ''R''. The parameter R is commonly referred to as the "radius" parameter of the distribution. The distribution arises as the limiting distribution of the eigenvalues of many random symmetric matrices, that is, as the dimensions of the random matrix approach infinity. The distribution of the spacing or gaps between eigenvalues is addressed by the similarly named Wigner surmise. General properties Because of symmetry, all of the odd-order moments of the Wigner distribution are zero. For positive integers , the -th moment of this distribution is :\frac\left(\right)^ \, In the typical special case that , this sequence coincides with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chebyshev Polynomial
The Chebyshev polynomials are two sequences of orthogonal polynomials related to the trigonometric functions, cosine and sine functions, notated as T_n(x) and U_n(x). They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebyshev polynomials of the first kind T_n are defined by T_n(\cos \theta) = \cos(n\theta). Similarly, the Chebyshev polynomials of the second kind U_n are defined by U_n(\cos \theta) \sin \theta = \sin\big((n + 1)\theta\big). That these expressions define polynomials in \cos\theta is not obvious at first sight but can be shown using de Moivre's formula (see #Trigonometric definition, below). The Chebyshev polynomials are polynomials with the largest possible leading coefficient whose absolute value on the interval (mathematics), interval is bounded by 1. They are also the "extremal" polynomials for many other properties. In 1952, Cornelius Lanczos showed that the Chebyshev polynomials are important in a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Noncrossing Partition
In combinatorial mathematics, the topic of noncrossing partitions has assumed some importance because of (among other things) its application to the theory of free probability. The number of noncrossing partitions of a set of ''n'' elements is the ''n''th Catalan number. The number of noncrossing partitions of an ''n''-element set with ''k'' blocks is found in the Narayana number triangle. Definition A partition of a set ''S'' is a set of non-empty, pairwise disjoint subsets of ''S'', called "parts" or "blocks", whose union is all of ''S''. Consider a finite set that is linearly ordered, or (equivalently, for purposes of this definition) arranged in a cyclic order like the vertices of a regular ''n''-gon. No generality is lost by taking this set to be ''S'' = . A noncrossing partition of ''S'' is a partition in which no two blocks "cross" each other, i.e., if ''a'' and ''b'' belong to one block and ''x'' and ''y'' to another, they are not arranged in the order ''a x b y''. If ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Of A Set
In mathematics, a partition of a set is a grouping of its elements into Empty set, non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a Set (mathematics), set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. Definition and notation A partition of a set ''X'' is a set of non-empty subsets of ''X'' such that every element ''x'' in ''X'' is in exactly one of these subsets (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets ''P'' is a partition of ''X'' if and only if all of the following conditions hold: *The family ''P'' does not contain the empty set (that is \emptyset \notin P). *The union (set theory), union of the sets in ''P'' is equal to ''X'' (that is \textstyle\bigcup_ A = X). The sets in ''P'' are said ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cumulant
In probability theory and statistics, the cumulants of a probability distribution are a set of quantities that provide an alternative to the '' moments'' of the distribution. Any two probability distributions whose moments are identical will have identical cumulants as well, and vice versa. The first cumulant is the mean, the second cumulant is the variance, and the third cumulant is the same as the third central moment. But fourth and higher-order cumulants are not equal to central moments. In some cases theoretical treatments of problems in terms of cumulants are simpler than those using moments. In particular, when two or more random variables are statistically independent, the th-order cumulant of their sum is equal to the sum of their th-order cumulants. As well, the third and higher-order cumulants of a normal distribution are zero, and it is the only distribution with this property. Just as for moments, where ''joint moments'' are used for collections of random variables ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Normal Distribution
In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f(x) = \frac e^\,. The parameter is the mean or expectation of the distribution (and also its median and mode), while the parameter \sigma^2 is the variance. The standard deviation of the distribution is (sigma). A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known. Their importance is partly due to the central limit theorem. It states that, under some conditions, the average of many samples (observations) of a random variable with finite mean and variance is itself a random variable—whose distribution c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Probability
Free probability is a mathematics, mathematical theory that studies non-commutative random variables. The "freeness" or free independence property is the analogue of the classical notion of statistical independence, independence, and it is connected with free products. This theory was initiated by Dan Voiculescu (mathematician), Dan Voiculescu around 1986 in order to attack the free group factors isomorphism problem, an important unsolved problem in the theory of operator algebras. Given a free group on some number of generators, we can consider the von Neumann algebra generated by the group algebra of a locally compact group, group algebra, which is a type II1 von Neumann algebra#Factors, factor. The isomorphism problem asks whether these are isomorphic for different numbers of generators. It is not even known if any two free group factors are isomorphic. This is similar to Tarski's free group problem, which asks whether two different non-abelian finitely generated free groups have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modified Bessel Function Of The First Kind
Modified may refer to: * ''Modified'' (album), the second full-length album by Save Ferris *Modified racing, or "Modifieds", an American automobile racing genre See also * Modification (other) * Modifier (other) Modifier may refer to: * Grammatical modifier, a word that modifies the meaning of another word or limits its meaning ** Compound modifier, two or more words that modify a noun ** Dangling modifier, a word or phrase that modifies a clause in an ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Moment Generating Function
In probability theory and statistics, the moment-generating function of a real-valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the moment-generating functions of distributions defined by the weighted sums of random variables. However, not all random variables have moment-generating functions. As its name implies, the moment-generating function can be used to compute a distribution’s moments: the -th moment about 0 is the -th derivative of the moment-generating function, evaluated at 0. In addition to univariate real-valued distributions, moment-generating functions can also be defined for vector- or matrix-valued random variables, and can even be extended to more general cases. The moment-generating function of a real-valu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bessel Function Of The First Kind
Bessel functions, named after Friedrich Bessel who was the first to systematically study them in 1824, are canonical solutions of Bessel's differential equation x^2 \frac + x \frac + \left(x^2 - \alpha^2 \right)y = 0 for an arbitrary complex number \alpha, which represents the ''order'' of the Bessel function. Although \alpha and -\alpha produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of \alpha. The most important cases are when \alpha is an integer or half-integer. Bessel functions for integer \alpha are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. #Spherical Bessel functions, Spherical Bessel functions with half-integer \alpha are obtained when solving the Helmholtz equation in spherical coordinates. Applications Bessel's equation arise ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]