HOME
*



picture info

Hadwiger Conjecture (combinatorial Geometry)
In combinatorial geometry, the Hadwiger conjecture states that any convex body in ''n''-dimensional Euclidean space can be covered by 2''n'' or fewer smaller bodies homothetic with the original body, and that furthermore, the upper bound of 2''n'' is necessary if and only if the body is a parallelepiped. There also exists an equivalent formulation in terms of the number of floodlights needed to illuminate the body. The Hadwiger conjecture is named after Hugo Hadwiger, who included it on a list of unsolved problems in 1957; it was, however, previously studied by and independently, . Additionally, there is a different Hadwiger conjecture concerning graph coloring—and in some sources the geometric Hadwiger conjecture is also called the Levi–Hadwiger conjecture or the Hadwiger–Levi covering problem. The conjecture remains unsolved even in three dimensions, though the two dimensional case was resolved by . Formal statement Formally, the Hadwiger conjecture is: If ''K'' is any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadwiger Covering
Hugo Hadwiger (23 December 1908 in Karlsruhe, Germany – 29 October 1981 in Bern, Switzerland) was a Swiss mathematician, known for his work in geometry, combinatorics, and cryptography. Biography Although born in Karlsruhe, Germany, Hadwiger grew up in Bern, Switzerland.. He did his undergraduate studies at the University of Bern, where he majored in mathematics but also studied physics and actuarial science. He continued at Bern for his graduate studies, and received his Ph.D. in 1936 under the supervision of Willy Scherrer. He was for more than forty years a professor of mathematics at Bern. Mathematical concepts named after Hadwiger Hadwiger's theorem in integral geometry classifies the isometry-invariant valuations on compact convex sets in ''d''-dimensional Euclidean space. According to this theorem, any such valuation can be expressed as a linear combination of the intrinsic volumes; for instance, in two dimensions, the intrinsic volumes are the area, the perim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent Plane
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a ''tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Discrete Geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object. Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology. History Although polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century. Early ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Archiv Der Mathematik
'' Archiv der Mathematik'' is a peer-reviewed mathematics journal published by Springer, established in 1948. Abstracting and indexing The journal is abstracted and indexed in:
Springer. 2022
* * * * According to the ''

Proceedings Of The American Mathematical Society
''Proceedings of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. As a requirement, all articles must be at most 15 printed pages. According to the ''Journal Citation Reports'', the journal has a 2018 impact factor of 0.813. Scope ''Proceedings of the American Mathematical Society'' publishes articles from all areas of pure and applied mathematics, including topology, geometry, analysis, algebra, number theory, combinatorics, logic, probability and statistics. Abstracting and indexing This journal is indexed in the following databases:Indexing and archiving notes
2011. American Mathematical Society. *

Journal Of The European Mathematical Society
'' Journal of the European Mathematical Society'' is a monthly peer review, peer-reviewed mathematical journal. Founded in 1999, the journal publishes articles on all areas of Mathematics, pure and applied mathematics. Most published articles are original research articles but the journal also publishes survey articles.Summary of the journal
The journal has been published by Springer_Science+Business_Media, Springer until 2003. Since 2004, it is published by the European Mathematical Society. The first editor-in-chief was Jürgen Jost, followed in 2004 by Haïm Brezis. The journal was founded in order to promote interdisciplinary work within the mathematical community and to preserve unity across pure and applied mathematics.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also publishes Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Spo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Borsuk's Conjecture
The Borsuk problem in geometry, for historical reasons incorrectly called Borsuk's conjecture, is a question in discrete geometry. It is named after Karol Borsuk. Problem In 1932, Karol Borsuk showed that an ordinary 3-dimensional ball in Euclidean space can be easily dissected into 4 solids, each of which has a smaller diameter than the ball, and generally ''n''-dimensional ball can be covered with compact sets of diameters smaller than the ball. At the same time he proved that ''n'' subsets are not enough in general. The proof is based on the Borsuk–Ulam theorem. That led Borsuk to a general question: : ''Die folgende Frage bleibt offen: Lässt sich jede beschränkte Teilmenge E des Raumes \mathbb R^n in'' (''n'' + 1) ''Mengen zerlegen, von denen jede einen kleineren Durchmesser als E hat?'' This can be translated as: : ''The following question remains open: Can every bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friedrich Wilhelm Levi
Friedrich Wilhelm Daniel Levi (February 6, 1888 – January 1, 1966) was a German mathematician known for his work in abstract algebra, especially torsion-free abelian groups. He also worked in geometry, topology, set theory, and analysis. Early life and education Levi was born to Georg Levi and Emma Blum in Mulhouse in Alsace-Lorraine, then part of the German Empire. He received his Ph.D. in 1911 under Heinrich Martin Weber at the University of Strasbourg. Career Levi served his mandatory military service in the German Army in 1906–1907, and was called up again serving in the artillery during World War I, 1914–18. Awarded the Iron Cross, he was discharged as a lieutenant. In 1917, he married Barbara Fitting, with whom he eventually had three children (Paul Levi, Charlotte, and Suzanne). He taught at the University of Leipzig from 1920 to 1935, when the Nazi government dismissed him because of his Jewish ancestry. Friedrich and Barbara moved to Calcutta, India. In 1935 he ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zonotope
In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric (a zonogon). Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as the three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorov, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope. Zonohedra that tile space The original motivation for studying zonohedra is that the Voronoi diagram of any lattice forms a convex uniform honeycomb in which the cells are zonohedra. Any zonohedron formed in this way can tessellate 3-dimensional space and is called a primary parallelohedron. Each primary parallelohedron is combinatorially equivalent to one of five types: the rhombohedron (including the cube), hexagonal prism, truncated octahedron, rhombic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Surface Of Constant Width
In geometry, a surface of constant width is a convex form whose width, measured by the distance between two opposite parallel planes touching its boundary, is the same regardless of the direction of those two parallel planes. One defines the width of the surface in a given direction to be the perpendicular distance between the parallels perpendicular to that direction. Thus, a surface of constant width is the three-dimensional analogue of a curve of constant width, a two-dimensional shape with a constant distance between pairs of parallel tangent lines. Definition More generally, any compact convex body ''D'' has one pair of parallel supporting planes in a given direction. A supporting plane is a plane that intersects the boundary of ''D'' but not the interior of ''D''. One defines the width of the body as before. If the width of ''D'' is the same in all directions, then one says that the body is of constant width and calls its boundary a surface of constant width, and the bo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point where two or more curves, lines, or edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection of edges, faces or facets of the object. In a polygon, a vertex is called " convex" if the internal angle of the polygon (i.e., the angle formed by the two edges at the vertex with the polygon inside the angle) is less than π radians (180°, two right angl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]