Gopakumar–Vafa Invariant
   HOME





Gopakumar–Vafa Invariant
In theoretical physics, Rajesh Gopakumar and Cumrun Vafa introduced in a series of papers new topological invariants, called Gopakumar–Vafa invariants, that represent the number of BPS states on a Calabi–Yau 3-fold. They lead to the following generating function for the Gromov–Witten invariants on a Calabi–Yau 3-fold ''M'': :\sum_^\infty~\sum_ \text(g,\beta)q^\lambda^=\sum_^\infty~\sum_^\infty~\sum_\text(g,\beta)\frac\left(2\sin\left(\frac\right)\right)^q^ , where * \beta is the class of pseudoholomorphic curves with genus ''g'', * \lambda is the topological string coupling, * q^\beta=\exp(2\pi i t_\beta) with t_\beta the Kähler parameter of the curve class \beta, * \text(g,\beta) are the Gromov–Witten invariants of curve class \beta at genus g, * \text(g,\beta) are the number of BPS states (the Gopakumar–Vafa invariants) of curve class \beta at genus g. As a partition function in topological quantum field theory Gopakumar–Vafa invariants can be viewed as a pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rajesh Gopakumar
Rajesh Gopakumar (born 1967 in Kolkata, India) is a theoretical physicist and the director of the International Centre for Theoretical Sciences (ICTS-TIFR) in Bangalore, India. He was previously a professor at Harish-Chandra Research Institute (HRI) in Prayagraj, India. He is known for his work on topological string theory. Background Gopakumar was born in 1967 to Jaishree and G. Gopakumar in Kolkata. His family hails from the southern Indian state of Kerala. He has the distinction of being ranked 1 in the entrance examination for IIT in 1987. Gopakumar obtained his integrated M.Sc. degree in physics from the IIT Kanpur in 1992. He completed his Ph.D. from Princeton University in 1997 under the supervision of David Gross. After a few years as a research associate at Harvard University, he joined HRI in 2001. He was also a visiting fellow at the Institute for Advanced Study, Princeton, New Jersey from 2001 to 2004. He is married to Rukmini Dey, a Professor of Math ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cumrun Vafa
Cumrun Vafa ( fa, کامران وفا ; born 1 August 1960) is an Iranian-American theoretical physicist and the Hollis Professor of Mathematics and Natural Philosophy at Harvard University. Early life and education Cumrun Vafa was born in Tehran, Iran on 1 August 1960. He became interested in physics as a young child, specifically how the moon was not falling from the sky, and he later grew his interests in math by high school and was fascinated by how mathematics could predict the movement of objects. He graduated from Alborz High School in Tehran and moved to the United States in 1977 for study at university. He received a B.S. in mathematics and physics from the Massachusetts Institute of Technology (MIT) in 1981. He received his Ph.D. in physics from Princeton University in 1985 after completing a doctoral dissertation, titled "Symmetries, inequalities and index theorems", under the supervision of Edward Witten. Academia After his PhD degree, Vafa became a junior fellow vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


BPS State
BPS, Bps or bps may refer to: Science and mathematics *Plural of bp, base pair, a measure of length of DNA *Plural of bp, basis point, one one-hundredth of a percentage point - ‱ *Battered person syndrome, a physical and psychological condition found in victims of abuse *Best practice statement, a qualification of a method used in guidelines documents *Bisphenol S, an organic chemical compound *Bladder pain syndrome, a disorder characterised by pain associated with urination *Bogomol'nyi–Prasad–Sommerfield bound, a mathematical concept in field and string theory *Bogomol'nyi–Prasad–Sommerfield state, solutions saturating the BPS bound *BPS domain, a protein domain *Bronchopulmonary sequestration, where a section of lung tissue has a decreased blood supply *Bovine papular stomatitis, a zoonotic farmyard pox Computing *IBM Basic Programming Support, BPS/360 * Bits per second (bps), a data rate unit *Bytes per second (Bps), a data rate unit *Bits per sample (bps), referrin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Calabi–Yau Manifold
In algebraic geometry, a Calabi–Yau manifold, also known as a Calabi–Yau space, is a particular type of manifold which has properties, such as Ricci flatness, yielding applications in theoretical physics. Particularly in superstring theory, the extra dimensions of spacetime are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of mirror symmetry. Their name was coined by , after who first conjectured that such surfaces might exist, and who proved the Calabi conjecture. Calabi–Yau manifolds are complex manifolds that are generalizations of K3 surfaces in any number of complex dimensions (i.e. any even number of real dimensions). They were originally defined as compact Kähler manifolds with a vanishing first Chern class and a Ricci-flat metric, though many other similar but inequivalent definitions are sometimes used. Definitions The motivational definition given by Shing-Tung Yau is of a compact K� ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gromov–Witten Invariant
In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic manifold. The GW invariants may be packaged as a homology or cohomology class in an appropriate space, or as the deformed cup product of quantum cohomology. These invariants have been used to distinguish symplectic manifolds that were previously indistinguishable. They also play a crucial role in closed type IIA string theory. They are named after Mikhail Gromov and Edward Witten. The rigorous mathematical definition of Gromov–Witten invariants is lengthy and difficult, so it is treated separately in the stable map article. This article attempts a more intuitive explanation of what the invariants mean, how they are computed, and why they are important. Definition Consider the following: *''X'': a closed symplectic manifold of dimensi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoholomorphic Curve
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory. Definition Let X be an almost complex manifold with almost complex structure J. Let C be a smooth Riemann surface (also called a complex curve) with complex structure j. A pseudoholomorphic curve in X is a map f : C \to X that satisfies the Cauchy–Riemann equation :\bar \partial_ f := \frac(df + J \circ df \circ j) = 0. Since J^2 = -1, this condition is equivalent to :J \circ df = df \circ j, which simply means that the differential df is complex-linear, that is, J maps each tangent space :T_xf(C)\subseteq T_xX ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Genus (mathematics)
In mathematics, genus (plural genera) has a few different, but closely related, meanings. Intuitively, the genus is the number of "holes" of a surface. A sphere has genus 0, while a torus has genus 1. Topology Orientable surfaces The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. Alternatively, it can be defined in terms of the Euler characteristic ''χ'', via the relationship ''χ'' = 2 − 2''g'' for closed surfaces, where ''g'' is the genus. For surfaces with ''b'' boundary components, the equation reads ''χ'' = 2 − 2''g'' − ''b''. In layman's terms, it's the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). A torus has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory which computes topological invariants. Although TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called quanta) of their underlying quantum fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory in quantum mechanics. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its devel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]