Gelfand Duality
In mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: * a way of representing commutative Banach algebras as algebras of continuous functions; * the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function. In the latter case, the Gelfand–Naimark representation theorem is one avenue in the development of spectral theory for normal operators, and generalizes the notion of diagonalizing a normal matrix. Historical remarks One of Gelfand's original applications (and one which historically motivated much of the study of Banach algebras) was to give a much shorter and more conceptual proof of a celebrated lemma of Norbert Wiener (see the citation below), characterizing the elements of the group algebras ''L''1(R) and \ell^1() whose translates ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tychonoff Space
In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff (i.e. not Hausdorff). Paul Urysohn had used the notion of completely regular space in a 1925 paper without giving it a name. But it was Andrey Tychonoff who introduced the terminology ''completely regular'' in 1930. Definitions A topological space X is called if points can be separated from closed sets via (bounded) continuous real-valued functions. In technical terms this means: for any closed set A \subseteq X and any point x \in X \setminus A, there exists a real-valued continuous function f : X \to \R such that f(x)=1 and f\vert_ = 0. (Equivalently one can choose any two values instead of 0 and 1 and even require that f be a bounded function.) A to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Net (mathematics)
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a function whose domain is a directed set. The codomain of this function is usually some topological space. Nets directly generalize the concept of a sequence in a metric space. Nets are primarily used in the fields of analysis and topology, where they are used to characterize many important topological properties that (in general), sequences are unable to characterize (this shortcoming of sequences motivated the study of sequential spaces and Fréchet–Urysohn spaces). Nets are in one-to-one correspondence with filters. History The concept of a net was first introduced by E. H. Moore and Herman L. Smith in 1922. The term "net" was coined by John L. Kelley. The related concept of a filter was developed in 1937 by Henri Cartan. Definitions A directed set is a non-empty set A together with a preorder, typically automatically assumed to be denoted by \,\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectral Radius
''Spectral'' is a 2016 Hungarian-American military science fiction action film co-written and directed by Nic Mathieu. Written with Ian Fried (screenwriter), Ian Fried & George Nolfi, the film stars James Badge Dale as DARPA research scientist Mark Clyne, with Max Martini, Emily Mortimer, Clayne Crawford, and Bruce Greenwood in supporting roles. The film is set in a civil war-ridden Moldova as invisible entities slaughter any living being caught in their path. The film was released worldwide on December 9, 2016 on Netflix. On February 1, 2017, Netflix released a prequel graphic novel of the film called ''Spectral: Ghosts of War'' which was made available digitally through the website ComiXology. Plot DARPA researcher Mark Clyne is sent to a United States, US United States Armed Forces, military Air base, airbase on the outskirts of Chișinău, to consult his created line of hyperspectral imaging goggles issued to United States Army, US Army United States Army Special Forces, S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
*-algebra
In mathematics, and more specifically in abstract algebra, a *-algebra (or involutive algebra; read as "star-algebra") is a mathematical structure consisting of two involutive rings and , where is commutative and has the structure of an associative algebra over . Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution. Definitions *-ring In mathematics, a *-ring is a ring with a map that is an antiautomorphism and an involution. More precisely, is required to satisfy the following properties: * * * * for all in . This is also called an involutive ring, involutory ring, and ring with involution. The third axiom is implied by the second and fourth axioms, making it redundant. Elements such that ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stone–Čech Compactification
In the mathematical discipline of general topology, Stone–Čech compactification (or Čech–Stone compactification) is a technique for constructing a Universal property, universal map from a topological space ''X'' to a Compact space, compact Hausdorff space ''βX''. The Stone–Čech compactification ''βX'' of a topological space ''X'' is the largest, most general compact Hausdorff space "generated" by ''X'', in the sense that any continuous map from ''X'' to a compact Hausdorff space List of mathematical jargon#factor through, factors through ''βX'' (in a unique way). If ''X'' is a Tychonoff space then the map from ''X'' to its image (mathematics), image in ''βX'' is a homeomorphism, so ''X'' can be thought of as a (Dense (topology), dense) subspace of ''βX''; every other compact Hausdorff space that densely contains ''X'' is a Quotient space (topology), quotient of ''βX''. For general topological spaces ''X'', the map from ''X'' to ''βX'' need not be Injective functi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mellin Transform
In mathematics, the Mellin transform is an integral transform that may be regarded as the multiplicative version of the two-sided Laplace transform. This integral transform is closely connected to the theory of Dirichlet series, and is often used in number theory, mathematical statistics, and the theory of asymptotic expansions; it is closely related to the Laplace transform and the Fourier transform, and the theory of the gamma function and allied special functions. The Mellin transform of a complex-valued function defined on \mathbf R^_+= (0,\infty) is the function \mathcal M f of complex variable s given (where it exists, see Fundamental strip below) by \mathcal\left\(s) = \varphi(s)=\int_0^\infty x^ f(x) \, dx = \int_f(x) x^s \frac. Notice that dx/x is a Haar measure on the multiplicative group \mathbf R^_+ and x\mapsto x^s is a (in general non-unitary) multiplicative character. The inverse transform is \mathcal^\left\(x) = f(x)=\frac \int_^ x^ \varphi(s)\, ds. The notation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiprimitive Ring
In algebra, a semiprimitive ring or Jacobson semisimple ring or J-semisimple ring is a ring whose Jacobson radical is zero. This is a type of ring more general than a semisimple ring, but where simple modules still provide enough information about the ring. Rings such as the ring of integers are semiprimitive, and an artinian semiprimitive ring is just a semisimple ring. Semiprimitive rings can be understood as subdirect products of primitive rings, which are described by the Jacobson density theorem. Definition A ring is called semiprimitive or Jacobson semisimple if its Jacobson radical is the zero ideal. A ring is semiprimitive if and only if it has a faithful semisimple left module. The semiprimitive property is left-right symmetric, and so a ring is semiprimitive if and only if it has a faithful semisimple right module. A ring is semiprimitive if and only if it is a subdirect product of left primitive rings. A commutative ring is semiprimitive if and only if it i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R- modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left–right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article to avoid confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to non-unital rings. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring- and module-theoretic results, such as Nakayama's lemma. Definitions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gelfand–Mazur Theorem
In operator theory, the Gelfand–Mazur theorem is a theorem named after Israel Gelfand and Stanisław Mazur which states that a Banach algebra with unit over the complex numbers in which every nonzero element is invertible is isometrically isomorphic to the complex numbers, i. e., the only complex Banach algebra that is a division algebra is the complex numbers \mathbb. The theorem follows from the fact that the spectrum of any element of a complex Banach algebra is nonempty: for every element a of a complex Banach algebra A there is some complex number \lambda such that \lambda 1 - a is not invertible. This is a consequence of the complex-analyticity of the resolvent function. By assumption, \lambda 1 - a = 0. So a = \lambda \cdot 1. This gives an isomorphism from A to \mathbb. The theorem can be strengthened to the claim that there are (up to isomorphism) exactly three real Banach division algebras: the field of reals \mathbb, the field of complex numbers \mathbb, and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Banach–Alaoglu Theorem
In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem (also known as Alaoglu's theorem) states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact. This theorem has applications in physics when one describes the set of states of an algebra of observables, namely that any state can be written as a convex linear combination of so-called pure states. History According to Lawrence Narici and Edward Beckenstein, the Alaoglu theorem is a “very important result—maybe most important fact about the weak-* topology—hatechos throughout functional analysis.” In 1912, Helly proved that the unit ball of the continuous dual space of C( , b is countably weak-* co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weak Topology
In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space (such as a normed vector space) with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis. One may call subsets of a topological vector space weakly closed (respectively, weakly compact, etc.) if they are closed (respectively, compact, etc.) with respect to the weak topology. Likewise, functions are sometimes called weakly continuous (respectively, weakly differentiable, weakly analytic, etc.) if they are continuous (respectively, differentiable, analytic, etc.) with respect to the weak topology. History Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence. The early pioneers ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |