GENERIC Formalism
In non-equilibrium thermodynamics, GENERIC is an acronym for General Equation for Non-Equilibrium Reversible-Irreversible Coupling. It is the general form of dynamic equation for a system with both reversible and irreversible dynamics (generated by energy and entropy, respectively). GENERIC formalism is the theory built around the GENERIC equation, which has been proposed in its final form in 1997 by Miroslav Grmela and Hans Christian Öttinger. GENERIC equation The GENERIC equation is usually written as :\frac=L(x)\cdot\frac(x)+M(x)\cdot\frac(x). Here: * x denotes a set of variables used to describe the state space. The vector x can also contain variables depending on a continuous index like a temperature field. In general, x is a function S\rightarrow\mathbb R, where the set S can contain both discrete and continuous indexes. Example: x=(U,V,T(\vec r)) for a gas with nonuniform temperature, contained in a volume \Sigma\subset\mathbb R^3 (S=\\cup\Sigma) * E(x), S(x) are the s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-equilibrium Thermodynamics
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions. Almost all systems found in nature are not in thermodynamic equilibrium, for they are changing or can be triggered to change over time, and are continuously and discontinuously subject to flux of matter and energy to and from other systems and to chemical reactions. Some systems and processes are, however, in a useful sense, near enough to thermodynamic equilibrium to allow description with useful accuracy by currently known non-equilibrium thermodynamics. Nevertheless, many natural systems and processes will always remain far beyond the scope ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Derivative
In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on which the functional depends. In the calculus of variations, functionals are usually expressed in terms of an integral of functions, their arguments, and their derivatives. In an integral of a functional, if a function is varied by adding to it another function that is arbitrarily small, and the resulting integrand is expanded in powers of , the coefficient of in the first order term is called the functional derivative. For example, consider the functional J = \int_a^b L( \, x, f(x), f \, '(x) \, ) \, dx \ , where . If is varied by adding to it a function , and the resulting integrand is expanded in powers of , then the change in the value of to first order in can be expressed as follows:According to , this notation is custo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Positive-semidefinite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it def ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobi Identity
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product a\times b and the Lie bracket operation ,b/math> both satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket. Definition Let + and \times be two binary operations, and let 0 be the neutral element for +. The is :x \times (y \times z) \ +\ y \times (z \times x) \ +\ z \times (x \times y)\ =\ 0. No ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Bracket
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called '' canonical transformations'', which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables (below symbolized by q_i and p_i, respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself H =H(q, p, t) as one of the new canonical momentum coordinates. In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the algebra of functions on a Poisson manifold is a special case. There are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Mechanics
Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta''. Both theories provide interpretations of classical mechanics and describe the same physical phenomena. Hamiltonian mechanics has a close relationship with geometry (notably, symplectic geometry and Poisson structures) and serves as a link between classical and quantum mechanics. Overview Phase space coordinates (p,q) and Hamiltonian H Let (M, \mathcal L) be a mechanical system with the configuration space M and the smooth Lagrangian \mathcal L. Select a standard coordinate system (\boldsymbol,\boldsymbol) on M. The quantities \textstyle p_i(\boldsymbol,\boldsymbol,t) ~\stackrel~ / are called ''momenta''. (Also ''generalized momenta'', ''conjugate momenta'', and ''canonical momenta''). For a time instant t, the Legendre transfor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Antisymmetric Matrix
{{Disambiguation ...
Antisymmetric or skew-symmetric may refer to: * Antisymmetry in linguistics * Antisymmetric relation in mathematics * Skew-symmetric graph * Self-complementary graph In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See: * Skew-symmetric matrix (a matrix ''A'' for which ) * Skew-symmetric bilinear form is a bilinear form ''B'' such that for all ''x'' and ''y''. * Antisymmetric tensor in matrices and index subsets. * "antisymmetric function" – odd function See also * Symmetry in mathematics Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. Given a structured objec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Poisson Matrix
{{disambiguation ...
Poisson may refer to: People *Siméon Denis Poisson, French mathematician Places *Poissons, a commune of Haute-Marne, France *Poisson, Saône-et-Loire, a commune of Saône-et-Loire, France Other uses *Poisson (surname), a French surname *Poisson (crater), a lunar crater named after Siméon Denis Poisson *The French word for fish See also *Adolphe-Poisson Bay, a body of water located to the southwest of Gouin Reservoir, in La Tuque, Mauricie, Quebec *Poisson distribution, a discrete probability distribution named after Siméon Denis Poisson *Poisson's equation, a partial differential equation named after Siméon Denis Poisson *List of things named after Siméon Denis Poisson *Poison (other) Poison is a substance that causes injury, illness, or death. Poison or The Poison may also refer to: Fictional characters * Poison (comics), a Marvel Comics heroine with toxic, poisonous abilities * Doctor Poison, two DC Comics villains * Poiso ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gradient
In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradient of a function is non-zero at a point , the direction of the gradient is the direction in which the function increases most quickly from , and the magnitude of the gradient is the rate of increase in that direction, the greatest absolute directional derivative. Further, a point where the gradient is the zero vector is known as a stationary point. The gradient thus plays a fundamental role in optimization theory, where it is used to maximize a function by gradient ascent. In coordinate-free terms, the gradient of a function f(\bf) may be defined by: :df=\nabla f \cdot d\bf where ''df'' is the total infinitesimal change in ''f'' for an infinitesimal displacement d\bf, and is seen to be maximal when d\bf is in the direction of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Reversible Dynamics
A mathematical or physical process is time-reversible if the dynamics of the process remain well-defined when the sequence of time-states is reversed. A deterministic process is time-reversible if the time-reversed process satisfies the same dynamic equations as the original process; in other words, the equations are invariant or symmetrical under a change in the sign of time. A stochastic process is reversible if the statistical properties of the process are the same as the statistical properties for time-reversed data from the same process. Mathematics In mathematics, a dynamical system is time-reversible if the forward evolution is one-to-one, so that for every state there exists a transformation (an involution) π which gives a one-to-one mapping between the time-reversed evolution of any one state and the forward-time evolution of another corresponding state, given by the operator equation: :U_ = \pi \, U_\, \pi Any time-independent structures (e.g. critical point ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional (mathematics)
In mathematics, a functional (as a noun) is a certain type of function. The exact definition of the term varies depending on the subfield (and sometimes even the author). * In linear algebra, it is synonymous with linear forms, which are linear mapping from a vector space V into its field of scalars (that is, an element of the dual space V^*) "Let ''E'' be a free module over a commutative ring ''A''. We view ''A'' as a free module of rank 1 over itself. By the dual module ''E''∨ of ''E'' we shall mean the module Hom(''E'', ''A''). Its elements will be called functionals. Thus a functional on ''E'' is an ''A''-linear map ''f'' : ''E'' → ''A''." * In functional analysis and related fields, it refers more generally to a mapping from a space X into the field of real or complex numbers. "A numerical function ''f''(''x'') defined on a normed linear space ''R'' will be called a ''functional''. A functional ''f''(''x'') is said to be ''linear'' if ''f''(α''x'' + β''y'') = α ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
State Space
A state space is the set of all possible configurations of a system. It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory. For instance, the toy problem Vacuum World has a discrete finite state space in which there are a limited set of configurations that the vacuum and dirt can be in. A "counter" system, where states are the natural numbers starting at 1 and are incremented over time has an infinite discrete state space. The angular position of an undamped pendulum is a continuous (and therefore infinite) state space. Definition In the theory of dynamical systems, the state space of a discrete system defined by a function ''ƒ'' can be modeled as a directed graph where each possible state of the dynamical system is represented by a vertex with a directed edge from ''a'' to ''b'' if and only if ''ƒ''(''a'') = ''b''. This is known as a state diagram. For a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |