Gödel Prize
The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Interest Group on Algorithms and Computational Theory ( ACM SIGACT). The award is named in honor of Kurt Gödel. Gödel's connection to theoretical computer science is that he was the first to mention the "P versus NP" question, in a 1956 letter to John von Neumann in which Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time. The Gödel Prize has been awarded since 1993. The prize is awarded alternately at ICALP (even years) and STOC (odd years). STOC is the ACM Symposium on Theory of Computing, one of the main North American conferences in theoretical computer science, whereas ICALP is the International Colloquium on Automata, Languages and Programming, one of the main Europe Europe is a c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Gödel Lecture
The Gödel Lecture is an honor in mathematical logic given by the Association for Symbolic Logic, associated with an annual lecture at the association's general meeting. The award is named after Kurt Gödel and has been given annually since 1990. Award winners The list of award winners and lecture titles is maintained online by the Association for Symbolic Logic. * 1990 Ronald Jensen, ''Inner Models and Large Cardinals.'' * 1991 Dana Scott, ''Will Logicians be Replaced by Machines?'' * 1992 Joseph R. Shoenfield, ''The Priority Method.'' * 1993 Angus Macintyre, ''Logic of Real and p-adic Analysis: Achievements and Challenges.'' * 1994 Donald A. Martin, ''L(R): A Survey.'' * 1995 Leo Harrington, ''Gödel, Heidegger, and Direct Perception (or, Why I am a Recursion Theorist).'' * 1996 Saharon Shelah, ''Categoricity without compactness.'' * 1997 Solomon Feferman, ''Occupations and Preoccupations with Gödel: His *Works* and the Work.'' * 1998 Alexander S. Kechris, ''Current T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
László Babai
László "Laci" Babai (born July 20, 1950, in Budapest) a fellow of the American Academy of Arts and Sciences, and won the Knuth Prize. Babai was an invited speaker at the International Congresses of Mathematicians in Kyoto (1990), Zürich (1994, plenary talk), and Rio de Janeiro Rio de Janeiro, or simply Rio, is the capital of the Rio de Janeiro (state), state of Rio de Janeiro. It is the List of cities in Brazil by population, second-most-populous city in Brazil (after São Paulo) and the Largest cities in the America ... (2018). Sources Professor László Babai's algorithm is next big step in conquering isomorphism in graphs// Published on Nov 20, 2015 Division of the Physical Sciences / The University of Chicago Mathematician claims breakthrough in complexity theory by Adrian Cho 10 November 2015 17:45 // Posted iMath Science AAAS News A Quasipolynomial Time Algorithm for Graph Isomorphism: The Details+ Background on Graph Isomorphism + The Main Result // Math ∩ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Neil Immerman
Neil Immerman (born 24 November 1953, Manhasset, New York) is an American theoretical computer science, theoretical computer scientist, a professor of computer science at the University of Massachusetts Amherst.Faculty directory: Neil Immerman Computer Science Department, University of Massachusetts Amherst, retrieved 2010-01-23. He is one of the key developers of descriptive complexity, an approach he is currently applying to research in model checking, database theory, and computational complexity theory. Professor Immerman is an editor of the ''SIAM Journal on Computing'' and of ''Logical Methods in Computer Science''. He received B.S. and M.S. degrees from Yale University in 1974 and his Ph.D. from Cornell University in 1980 under the supervision of Juris Hartmanis, a Turing Award winner at Cornell. [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Parity Function
In Boolean algebra, a parity function is a Boolean function whose value is one if and only if the input vector has an odd number of ones. The parity function of two inputs is also known as the XOR function. The parity function is notable for its role in theoretical investigation of circuit complexity of Boolean functions. The output of the parity function is the parity bit. Definition The n-variable parity function is the Boolean function f:\^n\to\ with the property that f(x)=1 if and only if the number of ones in the vector x\in\^n is odd. In other words, f is defined as follows: :f(x)=x_1\oplus x_2 \oplus \dots \oplus x_n where \oplus denotes exclusive or. Properties Parity only depends on the number of ones and is therefore a symmetric Boolean function. The ''n''-variable parity function and its negation are the only Boolean functions for which all disjunctive normal forms have the maximal number of 2 ''n'' − 1 monomials of length ''n'' and al ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Boolean Circuits
In computational complexity theory and circuit complexity, a Boolean circuit is a mathematical model for combinational digital logic circuits. A formal language can be decided by a family of Boolean circuits, one circuit for each possible input length. Boolean circuits are defined in terms of the logic gates they contain. For example, a circuit might contain binary AND and OR gates and unary NOT gates, or be entirely described by binary NAND gates. Each gate corresponds to some Boolean function that takes a fixed number of bits as input and outputs a single bit. Boolean circuits provide a model for many digital components used in computer engineering, including multiplexers, adders, and arithmetic logic units, but they exclude sequential logic. They are an abstraction that omits many aspects relevant to designing real digital logic circuits, such as metastability, fanout, glitches, power consumption, and propagation delay variability. Formal definition In giving a formal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Circuit Complexity
In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them. A related notion is the circuit complexity of a recursive language that is decided by a uniform family of circuits C_,C_,\ldots (see below). Proving lower bounds on size of Boolean circuits computing explicit Boolean functions is a popular approach to separating complexity classes. For example, a prominent circuit class P/poly consists of Boolean functions computable by circuits of polynomial size. Proving that \mathsf\not\subseteq \mathsf would separate P and NP (see below). Complexity classes defined in terms of Boolean circuits include AC0, AC, TC0, NC1, NC, and P/poly. Size and depth A Boolean circuit with n input bits is a directed acyclic graph in which every node (usually called ''gates'' in this context) is either an input node of in-degree 0 l ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Lower Bound
In mathematics, particularly in order theory, an upper bound or majorant of a subset of some preordered set is an element of that is every element of . Dually, a lower bound or minorant of is defined to be an element of that is less than or equal to every element of . A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound. The terms bounded above (bounded below) are also used in the mathematical literature for sets that have upper (respectively lower) bounds. Examples For example, is a lower bound for the set (as a subset of the integers or of the real numbers, etc.), and so is . On the other hand, is not a lower bound for since it is not smaller than every element in . and other numbers ''x'' such that would be an upper bound for ''S''. The set has as both an upper bound and a lower bound; all other numbers are either an upper bound or a lower bound for tha ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Johan Håstad
Johan Torkel Håstad (; born 19 November 1960) is a Swedish theoretical computer scientist most known for his work on computational complexity theory. He was the recipient of the Gödel Prize in 1994 and 2011 and the ACM Doctoral Dissertation Award in 1986, among other prizes. He has been a professor in theoretical computer science at KTH Royal Institute of Technology in Stockholm, Sweden since 1988, becoming a full professor in 1992. He is a member of the Royal Swedish Academy of Sciences since 2001. He received his B.S. in Mathematics at Stockholm University in 1981, his M.S. in Mathematics at Uppsala University in 1984 and his Ph.D. in Mathematics from MIT in 1986. Håstad's thesis and 1994 Gödel Prize concerned his work on lower bounds on the size of constant-depth Boolean circuits for the parity function. After Andrew Yao proved that such circuits require exponential size, Håstad proved nearly optimal lower bounds on the necessary size through his switching lemma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
SIAM Journal On Computing
The ''SIAM Journal on Computing'' is a scientific journal focusing on the mathematical and formal aspects of computer science. It is published by the Society for Industrial and Applied Mathematics (SIAM). Although its official ISO abbreviation is ''SIAM J. Comput.'', its publisher and contributors frequently use the shorter abbreviation ''SICOMP''. SICOMP typically hosts the special issues of the IEEE Annual Symposium on Foundations of Computer Science (FOCS) and the Annual ACM Symposium on Theory of Computing (STOC), where about 15% of papers published in FOCS and STOC each year are invited to these special issues. For example, Volume 48 contains 11 out of 85 papers published in FOCS 2016. References External linksSIAM Journal on Computing on DBL ...
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Journal Of Computer And System Sciences
The ''Journal of Computer and System Sciences'' (JCSS) is a peer-reviewed scientific journal in the field of computer science. ''JCSS'' is published by Elsevier, and it was started in 1967. Many influential scientific articles have been published in ''JCSS''; these include five papers that have won the Gödel Prize The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer science, given jointly by the European Association for Theoretical Computer Science (EATCS) and the Association for Computing Machinery Special Inter .... Its managing editor is Michael Segal. Notes References * * External links * Journal homepageScienceDirect accessDBLP information Computer science journals Elsevier academic journals {{compu-journal-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Interactive Proof System
In computational complexity theory, an interactive proof system is an abstract machine that models computation as the exchange of messages between two parties: a ''prover'' and a ''verifier''. The parties interact by exchanging messages in order to ascertain whether a given string belongs to a language or not. The prover is assumed to possess unlimited computational resources but cannot be trusted, while the verifier has bounded computation power but is assumed to be always honest. Messages are sent between the verifier and prover until the verifier has an answer to the problem and has "convinced" itself that it is correct. All interactive proof systems have two requirements: * Completeness: if the statement is true, the honest prover (that is, one following the protocol properly) can convince the honest verifier that it is indeed true. * Soundness: if the statement is false, no prover, even if it doesn't follow the protocol, can convince the honest verifier that it is true, excep ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |
|
Charles Rackoff
Charles Weill Rackoff is an American cryptologist. Born and raised in New York City, he attended MIT as both an undergraduate and graduate student, and earned a Ph.D. degree in Computer Science in 1974. He spent a year as a postdoctoral scholar at INRIA in France. Rackoff currently works at the University of Toronto. His research interests are in computational complexity theory. For some time now, he has been specializing in cryptography and security protocols. In 1988, he collaborated with Michael Luby in a widely cited analysis of the Feistel cipher construction (one important result shown there is the construction of a strongly pseudo random permutation generator from a pseudo random function generator). Rackoff was awarded the 1993 Gödel Prize for his work on interactive proof systems and for being one of the co-inventors of zero-knowledge proofs. In 2011, he won the RSA Award for Excellence in Mathematics for his various contributions to cryptography. Rackoff's controve ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon] |