Fuchs' Theorem
In mathematics, Fuchs's theorem, named after Lazarus Fuchs, states that a second-order differential equation of the form y'' + p(x)y' + q(x)y = g(x) has a solution expressible by a generalised Frobenius series when p(x), q(x) and g(x) are analytic at x = a or a is a regular singular point. That is, any solution to this second-order differential equation can be written as y = \sum_^\infty a_n (x - a)^, \quad a_0 \neq 0 for some positive real ''s'', or y = y_0 \ln(x - a) + \sum_^\infty b_n(x - a)^, \quad b_0 \neq 0 for some positive real ''r'', where ''y''0 is a solution of the first kind. Its radius of convergence is at least as large as the minimum of the radii of convergence of p(x), q(x) and g(x). See also * Frobenius method In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form z^2 u'' + p(z)z u'+ q(z) u = 0 with u' \equiv \frac a ... ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lazarus Fuchs
Lazarus Immanuel Fuchs (5 May 1833 – 26 April 1902) was a Jewish-German mathematician who contributed important research in the field of linear differential equations. He was born in Mosina, Moschin in the Grand Duchy of Posen (modern-day Mosina, Poland) and died in Berlin, German Empire, Germany. He was buried in Schöneberg in the Alter St.-Matthäus-Kirchhof, St. Matthew's Cemetery. His grave in section H is preserved and listed as a grave of honour of the State of Berlin. Contribution He is the eponym of Fuchsian groups and functions, and the Picard–Fuchs equation. A singularity (mathematics), singular point ''a'' of a linear differential equation :y''+p(x)y'+q(x)y=0 is called Fuchsian if ''p'' and ''q'' are meromorphic function, meromorphic around the point ''a'', and have poles of orders at most 1 and 2, respectively. According to a Fuchs's theorem, theorem of Fuchs, this condition is necessary and sufficient for the regular singular point, regularity of the singular ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Series
In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form z^2 u'' + p(z)z u'+ q(z) u = 0 with u' \equiv \frac and u'' \equiv \frac. in the vicinity of the regular singular point z=0. One can divide by z^2 to obtain a differential equation of the form u'' + \fracu' + \fracu = 0 which will not be solvable with regular power series methods if either or is not analytic at . The Frobenius method enables one to create a power series solution to such a differential equation, provided that ''p''(''z'') and ''q''(''z'') are themselves analytic at 0 or, being analytic elsewhere, both their limits at 0 exist (and are finite). History Frobenius' contribution was not so much in all the possible ''forms'' of the series solutions involved (see below). These forms had all been established earlier, by Lazarus Fuchs. The ''indicial polynomial'' (see bel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if for every x_0 in its domain, its Taylor series about x_0 converges to the function in some neighborhood of x_0 . This is stronger than merely being infinitely differentiable at x_0 , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is infinitely differentiable but not analytic. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + \cdots in which the coefficients a_0, a_1, \dots a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Regular Singular Point
In mathematics, in the theory of ordinary differential equations in the complex plane \Complex, the points of \Complex are classified into ''ordinary points'', at which the equation's coefficients are analytic functions, and ''singular points'', at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded (in any small sector) by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different. Formal definitions More precisely, consider an ordinary linear differential equation of -th order f^(z) + \sum_^ p_i(z) f^ (z) = 0 with meromorphic functions. The equa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Frobenius Method
In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form z^2 u'' + p(z)z u'+ q(z) u = 0 with u' \equiv \frac and u'' \equiv \frac. in the vicinity of the regular singular point z=0. One can divide by z^2 to obtain a differential equation of the form u'' + \fracu' + \fracu = 0 which will not be solvable with regular power series methods if either or is not analytic at . The Frobenius method enables one to create a power series solution to such a differential equation, provided that ''p''(''z'') and ''q''(''z'') are themselves analytic at 0 or, being analytic elsewhere, both their limits at 0 exist (and are finite). History Frobenius' contribution was not so much in all the possible ''forms'' of the series solutions involved (see below). These forms had all been established earlier, by Lazarus Fuchs. The ''indicial polynomial'' (see bel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |