Five Lemma
In mathematics, especially homological algebra and other applications of abelian category theory, the five lemma is an important and widely used lemma (mathematics), lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also works in the category of groups, for example. The five lemma can be thought of as a combination of two other theorems, the four lemmas, which are duality (category theory), dual to each other. Statements Consider the following commutative diagram in any abelian category (such as the category of abelian groups or the category of vector spaces over a given field (algebra), field) or in the category of group (mathematics), groups. : file:5 lemma.svg The five lemma states that, if the rows are exact sequence, exact, ''m'' and ''p'' are isomorphisms, ''l'' is an epimorphism, and ''q'' is a monomorphism, then ''n'' is also an isomorphism. The two four-lemmas state: Proof The method of proof we shall use is commonly referred ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
4 Lemma Left
4 (four) is a number, numeral and digit. It is the natural number following 3 and preceding 5. It is a square number, the smallest semiprime and composite number, and is considered unlucky in many East Asian cultures. Evolution of the Hindu-Arabic digit Brahmic numerals represented 1, 2, and 3 with as many lines. 4 was simplified by joining its four lines into a cross that looks like the modern plus sign. The Shunga would add a horizontal line on top of the digit, and the Kshatrapa and Pallava evolved the digit to a point where the speed of writing was a secondary concern. The Arabs' 4 still had the early concept of the cross, but for the sake of efficiency, was made in one stroke by connecting the "western" end to the "northern" end; the "eastern" end was finished off with a curve. The Europeans dropped the finishing curve and gradually made the digit less cursive, ending up with a digit very close to the original Brahmin cross. While the shape of the character ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Four Lemma Epic And Zero
4 (four) is a number, numeral and digit. It is the natural number following 3 and preceding 5. It is a square number, the smallest semiprime and composite number, and is considered unlucky in many East Asian cultures. Evolution of the Hindu-Arabic digit Brahmic numerals represented 1, 2, and 3 with as many lines. 4 was simplified by joining its four lines into a cross that looks like the modern plus sign. The Shunga would add a horizontal line on top of the digit, and the Kshatrapa and Pallava evolved the digit to a point where the speed of writing was a secondary concern. The Arabs' 4 still had the early concept of the cross, but for the sake of efficiency, was made in one stroke by connecting the "western" end to the "northern" end; the "eastern" end was finished off with a curve. The Europeans dropped the finishing curve and gradually made the digit less cursive, ending up with a digit very close to the original Brahmin cross. While the shape of the character fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mitchell's Embedding Theorem
Mitchell's embedding theorem, also known as the Freyd–Mitchell theorem or the full embedding theorem, is a result about abelian categories; it essentially states that these categories, while rather abstractly defined, are in fact concrete categories of modules. This allows one to use element-wise diagram chasing proofs in these categories. The theorem is named after Barry Mitchell and Peter Freyd. Details The precise statement is as follows: if A is a small abelian category, then there exists a ring ''R'' (with 1, not necessarily commutative) and a full, faithful and exact functor ''F'': A → ''R''-Mod (where the latter denotes the category of all left ''R''-modules). The functor ''F'' yields an equivalence between A and a full subcategory of ''R''-Mod in such a way that kernels and cokernels computed in A correspond to the ordinary kernels and cokernels computed in ''R''-Mod. Such an equivalence is necessarily additive. The theorem thus essentially says that the obje ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Image (function)
In mathematics, for a function f: X \to Y, the image of an input value x is the single output value produced by f when passed x. The preimage of an output value y is the set of input values that produce y. More generally, evaluating f at each element of a given subset A of its domain X produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain Y is the set of all elements of X that map to a member of B. The image of the function f is the set of all output values it may produce, that is, the image of X. The preimage of f is the preimage of the codomain Y. Because it always equals X (the domain of f), it is rarely used. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel (algebra)
In algebra, the kernel of a homomorphism is the relation describing how elements in the domain of the homomorphism become related in the image. A homomorphism is a function that preserves the underlying algebraic structure in the domain to its image. When the algebraic structures involved have an underlying group structure, the kernel is taken to be the preimage of the group's identity element in the image, that is, it consists of the elements of the domain mapping to the image's identity. For example, the map that sends every integer to its parity (that is, 0 if the number is even, 1 if the number is odd) would be a homomorphism to the integers modulo 2, and its respective kernel would be the even integers which all have 0 as its parity. The kernel of a homomorphism of group-like structures will only contain the identity if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Surjective
In mathematics, a surjective function (also known as surjection, or onto function ) is a function such that, for every element of the function's codomain, there exists one element in the function's domain such that . In other words, for a function , the codomain is the image of the function's domain . It is not required that be unique; the function may map one or more elements of to the same element of . The term ''surjective'' and the related terms '' injective'' and ''bijective'' were introduced by Nicolas Bourbaki, a group of mainly French 20th-century mathematicians who, under this pseudonym, wrote a series of books presenting an exposition of modern advanced mathematics, beginning in 1935. The French word '' sur'' means ''over'' or ''above'', and relates to the fact that the image of the domain of a surjective function completely covers the function's codomain. Any function induces a surjection by restricting its codomain to the image of its domain. Every surjec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Injective
In mathematics, an injective function (also known as injection, or one-to-one function ) is a function that maps distinct elements of its domain to distinct elements of its codomain; that is, implies (equivalently by contraposition, implies ). In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. A func ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German meaning "similar" to meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory. A homomorphism may also be an isomorphis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set (mathematics), set to a set assigns to each element of exactly one element of .; the words ''map'', ''mapping'', ''transformation'', ''correspondence'', and ''operator'' are sometimes used synonymously. The set is called the Domain of a function, domain of the function and the set is called the codomain of the function. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. History of the function concept, Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable function, differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the 19th century in terms of set theory, and this greatly increased the possible applications of the concept. A f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |