HOME





Five Circles Theorem
In geometry, the five circles theorem states that, given five circles centered on a common sixth circle and intersecting each other chainwise on the same circle, the lines joining their second intersection points forms a pentagram whose points lie on the circles themselves. See also * Clifford's circle theorems * Miquel's theorem * Six circles theorem * Seven circles theorem In geometry, the seven circles theorem is a theorem about a certain arrangement of seven circles in the Euclidean plane. Specifically, given a chain of six circles all tangent to a seventh circle and each tangent to its two neighbors, the three l ... References * External links * * {{MathWorld, title=Miquel Pentagram Theorem, urlname=MiquelsPentagramTheorem Theorems about circles ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circle
A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is called the radius. The length of a line segment connecting two points on the circle and passing through the centre is called the diameter. A circle bounds a region of the plane called a Disk (mathematics), disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern machinery possible. In mathematics, the study of the circle has helped inspire the development of geometry, astronomy and calculus. Terminology * Annulus (mathematics), Annulus: a ring-shaped object, the region bounded by two concentric circles. * Circular arc, Arc: any Connected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pentagram
A pentagram (sometimes known as a pentalpha, pentangle, or star pentagon) is a regular five-pointed star polygon, formed from the diagonal line segments of a convex (or simple, or non-self-intersecting) regular pentagon. Drawing a circle around the five points creates a similar symbol referred to as the pentacle, which is used widely by Wiccans and in paganism, or as a sign of life and connections. The word ''pentagram'' comes from the Greek language, Greek word πεντάγραμμον (''pentagrammon''), from πέντε (''pente''), "five" + γραμμή (''grammē''), "line". The word pentagram refers to just the star and the word pentacle refers to the star within a circle, although there is some overlap in usage. The word ''pentalpha'' is a 17th-century revival of a post-classical Greek name of the shape. History Early history Early pentagrams have been found on Sumerian pottery from Ur c. 3500 Common Era, BCE, and the five-pointed star was at various times the symbol of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Clifford's Circle Theorems
In geometry, Clifford's theorems, named after the English geometer William Kingdon Clifford, are a sequence of theorems relating to intersections of circles. Statement The first theorem considers any four circles passing through a common point ''M'' and otherwise in general position, meaning that there are six additional points where exactly two of the circles cross and that no three of these crossing points are collinear. Every set of three of these four circles has among them three crossing points, and (by the assumption of non-collinearity) there exists a circle passing through these three crossing points. The conclusion is that, like the first set of four circles, the second set of four circles defined in this way all pass through a single point ''P'' (in general not the same point as ''M''). The second theorem considers five circles in general position passing through a single point ''M''. Each subset of four circles defines a new point ''P'' according to the first ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Miquel's Theorem
Miquel's theorem is a result in geometry, named after Auguste Miquel, concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sides. It is one of several results concerning circles in Euclidean geometry due to Miquel, whose work was published in Joseph Liouville, Liouville's newly founded journal ''Journal de mathématiques pures et appliquées''. Formally, let ''ABC'' be a triangle, with arbitrary points ''A´'', ''B´'' and ''C´'' on sides ''BC'', ''AC'', and ''AB'' respectively (or their extended side, extensions). Draw three circumcircles (Miquel's circles) to triangles ''AB´C´'', ''A´BC´'', and ''A´B´C''. Miquel's theorem states that these circles intersect in a single point ''M'', called the Miquel point. In addition, the three angles ''MA´B'', ''MB´C'' and ''MC´A'' (green in the diagram) are all equal, as are the three supplementary angles ''MA´C'', ''MB´A'' and ''MC´B''. - Wells refers to Miquel' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Six Circles Theorem
In geometry, the six circles theorem relates to a chain of six circles together with a triangle, such that each circle is tangent to two sides of the triangle and also to the preceding circle in the chain. The chain closes, in the sense that the sixth circle is always tangent to the first circle. It is assumed in this construction that all circles lie within the triangle, and all points of tangency lie on the sides of the triangle. If the problem is generalized to allow circles that may not be within the triangle, and points of tangency on the lines extending the sides of the triangle, then the sequence of circles eventually reaches a periodic sequence of six circles, but may take arbitrarily many steps to reach this periodicity. The name may also refer to Miquel's six circles theorem Miquel's theorem is a result in geometry, named after Auguste Miquel, concerning the intersection of three circles, each drawn through one vertex of a triangle and two points on its adjacent sid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seven Circles Theorem
In geometry, the seven circles theorem is a theorem about a certain arrangement of seven circles in the Euclidean plane. Specifically, given a chain of six circles all tangent to a seventh circle and each tangent to its two neighbors, the three lines drawn between opposite pairs of the points of tangency on the seventh circle all pass through the same point. Though elementary in nature, this theorem was not discovered until 1974 (by Evelyn, Money-Coutts, and Tyrrell). See also * Brianchon's theorem References * * * External links * {{MathWorld, title=Seven Circles Theorem, urlname=SevenCirclesTheorem Interactive Appletby Michael Borcherds showing The Seven Circles Theorem made usinGeoGebra the Seven Circles Theoremby Stanley Rabinowitz, with a proof based on Ceva's theorems. Seven Circles Theoremat Cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]