En (Lie Algebra)
   HOME
*





En (Lie Algebra)
In mathematics, especially in Lie theory, E''n'' is the Kac–Moody algebra whose Dynkin diagram is a bifurcating graph with three branches of length 1, 2 and ''k'', with ''k'' = ''n'' − 4. In some older books and papers, ''E''2 and ''E''4 are used as names for ''G''2 and ''F''4. Finite-dimensional Lie algebras The E''n'' group is similar to the A''n'' group, except the nth node is connected to the 3rd node. So the Cartan matrix appears similar, -1 above and below the diagonal, except for the last row and column, have −1 in the third row and column. The determinant of the Cartan matrix for E''n'' is 9 − ''n''. *E3 is another name for the Lie algebra ''A''1''A''2 of dimension 11, with Cartan determinant 6. *:\left \begin 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end\right /math> *E4 is another name for the Lie algebra ''A''4 of dimension 24, with Cartan determinant 5. *:\left \begin 2 & -1 & 0 & 0 \\ -1 & 2 & -1& 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unimodular Lattice
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in ''n''-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The ''E''8 lattice and the Leech lattice are two famous examples. Definitions * A lattice is a free abelian group of finite rank with a symmetric bilinear form (·, ·). * The lattice is integral if (·,·) takes integer values. * The dimension of a lattice is the same as its rank (as a Z-module). * The norm of a lattice element ''a'' is (''a'', ''a''). * A lattice is positive definite if the norm of all nonzero elements is positive. * The determinant of a lattice is the determinant of the Gram matrix, a matrix with entries (''ai'', ''aj''), where the elements ''ai'' form a basis for the lattice. * An integral lattice is unimodular if its determinant is 1 or −1. * A unimodular lattice is ev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Geometrical Methods In Theoretical Physics
International Conference on Differential Geometric Methods in Theoretical Physics are congresses held every few years on the subject of Differential geometric methods in Theoretical physics. Lectures, seminars, and discussions are held in different universities throughout the world, every few years, and a book compilation is published thereafter consisting of the papers submitted and discussed at the conference. Works 1981 *Conference on Differential Geometric Methods in Theoretical Physics :International Centre for Theoretical Physics, Trieste, 30 June-3 July 1981 :by G. Denardo; H. D. Doebner; International Centre for Theoretical Physics. :Type: Book :Language: English :Publisher: Singapore : World Scientific, ©1983. : : :OCLC: 9738857 13th *International Conference on Differential Geometric Methods in Theoretical Physics :Proceedings of the XIII International Conference on Differential Geometric Methods in Theoretical Physics : ds. Heinz Dietrich Doebner, Tchavdar D. Pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 1 K2 Polytope
In geometry, 1k2 polytope is a uniform polytope in n-dimensions (n = k+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol 1k2 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequence. It can be named by an extended Schläfli symbol . Family members The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-demicube (demipenteract) in 5-dimensions, and the 4- simplex (5-cell) in 4-dimensions. Each polytope is constructed from 1k-1,2 and (n-1)-demicube facets. Each has a vertex figure of a ' polytope is a birectified n- simplex, ''t2''. The sequence ends with k=6 (n=10), as an infinite tessellation of 9-dimensional hyperbolic space. The complete family of 1k2 polytope polytopes are: # 5-cell: 102, (5 tetrahedral cells) # 112 polytope, (16 5-cell, and 10 16-cell facets) # 122 polytope, (54 demipenteract facets) # 132 polytope, (56 122 and 126 demihexeract In geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 2 K1 Polytope
In geometry, 2k1 polytope is a uniform polytope in ''n'' dimensions (''n'' = ''k''+4) constructed from the En Coxeter group. The family was named by their Coxeter symbol as 2k1 by its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 2-node sequence. It can be named by an extended Schläfli symbol . Family members The family starts uniquely as 6-polytopes, but can be extended backwards to include the 5-orthoplex (pentacross) in 5-dimensions, and the 4- simplex (5-cell) in 4-dimensions. Each polytope is constructed from (n-1)- simplex and 2k-1,1 (n-1)-polytope facets, each has a vertex figure as an (n-1)-demicube, '. The sequence ends with k=6 (n=10), as an infinite hyperbolic tessellation of 9-space. The complete family of 2k1 polytope polytopes are: # 5-cell: 201, (5 tetrahedra cells) # Pentacross: 211, (32 5-cell (201) facets) # 221, (72 5- simplex and 27 5-orthoplex (211) facets) # 231, (576 6- simplex and 56 221 facets) # 241, (17280 7- simple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semiregular K 21 Polytope
In geometry, a uniform ''k''21 polytope is a polytope in ''k'' + 4 dimensions constructed from the ''E''''n'' Coxeter group, and having only regular polytope facets. The family was named by their Coxeter symbol ''k''21 by its bifurcating Coxeter–Dynkin diagram, with a single ring on the end of the ''k''-node sequence. Thorold Gosset discovered this family as a part of his 1900 enumeration of the regular and semiregular polytopes, and so they are sometimes called Gosset's semiregular figures. Gosset named them by their dimension from 5 to 9, for example the ''5-ic semiregular figure''. Family members The sequence as identified by Gosset ends as an infinite tessellation (space-filling honeycomb) in 8-space, called the E8 lattice. (A final form was not discovered by Gosset and is called the E9 lattice: 621. It is a tessellation of hyperbolic 9-space constructed of ∞ 9- simplex and ∞ 9-orthoplex facets with all vertices at infinity.) The family starts uniquely as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilradical Of A Lie Algebra
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of any two nilpotent ideals is nilpotent. It is an ideal in the radical \mathfrak(\mathfrak) of the Lie algebra \mathfrak. The quotient of a Lie algebra by its nilradical is a reductive Lie algebra \mathfrak^. However, the corresponding short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does not split in general (i.e., there isn't always a ''subalgebra'' complementary to \mathfrak(\mathfrak g) in \mathfrak). This is in contrast to the Levi decomposition: the short exact sequence : 0 \to \mathfrak(\mathfrak g)\to \mathfrak g\to \mathfrak^\to 0 does split (essentially because the quotient \mathfrak^ is semisimple). See also * Levi decomposition In Lie theory and representation theory, the Levi decompositi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Heisenberg Algebra
In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form ::\begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end under the operation of matrix multiplication. Elements ''a, b'' and ''c'' can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group"). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem. More generally, one can consider Heisenberg groups associated to ''n''-dimensional systems, and most generally, to any symplectic vector space. The three-dimensional case In the three-dimensional case, the product of two Heisenberg matrices is given by: :\begin 1 & a & c\\ 0 & 1 & b\\ 0 & 0 & 1\\ \end \begin 1 & a' & c'\\ 0 & 1 & b'\\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

M-theory
M-theory is a theory in physics that unifies all consistent versions of superstring theory. Edward Witten first conjectured the existence of such a theory at a string theory conference at the University of Southern California in 1995. Witten's announcement initiated a flurry of research activity known as the second superstring revolution. Prior to Witten's announcement, string theorists had identified five versions of superstring theory. Although these theories initially appeared to be very different, work by many physicists showed that the theories were related in intricate and nontrivial ways. Physicists found that apparently distinct theories could be unified by mathematical transformations called S-duality and T-duality. Witten's conjecture was based in part on the existence of these dualities and in part on the relationship of the string theories to a field theory called eleven-dimensional supergravity. Although a complete formulation of M-theory is not known, such a form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lorentzian Algebra
Lorentzian may refer to * Cauchy distribution, also known as the Lorentz distribution, Lorentzian function, or Cauchy–Lorentz distribution * Lorentz transformation * Lorentzian manifold See also *Lorentz (other) Lorentz is a surname and a given name. Lorentz may also refer to: Things named for Hendrik Lorentz * Lorentz factor, Doppler effect *The Lorentz-Lorenz law, the law regarding the refractive index of a substance discovered independently by Hendri ... * Lorenz (other), spelled without the 't' {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


E8 Lattice
In mathematics, the E lattice is a special lattice in R. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E root system. The normIn this article, the ''norm'' of a vector refers to its length squared (the square of the ordinary norm). of the E lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H. J. S. Smith in 1867, and the first explicit construction of this quadratic form was given by Korkin and Zolotarev in 1873. The E lattice is also called the Gosset lattice after Thorold Gosset who was one of the first to study the geometry of the lattice itself around 1900. Lattice points The E lattice is a discrete subgroup of R of full rank (i.e. it spans all of R). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative. Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected Lie group unique up to finite coverings ( Lie's third theorem). This correspondence allows one to study the structure and classification of Lie groups in terms of Lie algebras. In physics, Lie groups appear as symmetry groups ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]