Extended Supersymmetry
In theoretical physics, extended supersymmetry is supersymmetry whose infinitesimal generators Q_i^\alpha carry not only a spinor index \alpha, but also an additional index i=1,2 \dots \mathcal where \mathcal is integer (such as 2 or 4). Extended supersymmetry is also called \mathcal=2, \mathcal=4 supersymmetry, for example. Extended supersymmetry is very important for analysis of mathematical properties of quantum field theory and superstring theory. The more extended supersymmetry is, the more it constrains physical observables and parameters. See also * Supersymmetry algebra In theoretical physics, a supersymmetry algebra (or SUSY algebra) is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of int ... * Harmonic superspace * Projective superspace References Supersymmetry {{Quantum-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain, and predict List of natural phenomena, natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert E ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetry
Supersymmetry is a Theory, theoretical framework in physics that suggests the existence of a symmetry between Particle physics, particles with integer Spin (physics), spin (''bosons'') and particles with half-integer spin (''fermions''). It proposes that for every known particle, there exists a partner particle with different spin properties. There have been multiple experiments on supersymmetry that have failed to provide evidence that it exists in nature. If evidence is found, supersymmetry could help explain certain phenomena, such as the nature of dark matter and the hierarchy problem in particle physics. A supersymmetric theory is a theory in which the equations for force and the equations for matter are identical. In theoretical physics, theoretical and mathematical physics, any theory with this property has the ''principle of supersymmetry'' (SUSY). Dozens of supersymmetric theories exist. In theory, supersymmetry is a type of Spacetime symmetries, spacetime symmetry betwe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spinor
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal transformation, infinitesimal) rotation, but unlike Euclidean vector, geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360° (see picture). It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors (although this is inaccurate and may be misleading; they are better viewed as "square roots" of Section (fiber bundle), sections of vector bundles – in the case of the exterior algebra bundle of the cotangent bundle, they thus become "square roots" of differential forms). It is also possible to associate a substantially similar notion of spinor to Minkowski space, in which cas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines Field theory (physics), field theory and the principle of relativity with ideas behind quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. The current standard model of particle physics is based on QFT. History Quantum field theory emerged from the work of generations of theoretical physicists spanning much of the 20th century. Its development began in the 1920s with the description of interactions between light and electrons, culminating in the first quantum field theory—quantum electrodynamics. A major theoretical obstacle soon followed with the appearance and persistence of various infinities in perturbative calculations, a problem only resolved in the 1950s with the invention of the renormalization procedure. A second major barrier came with QFT's apparent inabili ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superstring Theory
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings. 'Superstring theory' is a shorthand for supersymmetric string theory because unlike bosonic string theory, it is the version of string theory that accounts for both fermions and bosons and incorporates supersymmetry to model gravity. Since the second superstring revolution, the five superstring theories ( Type I, Type IIA, Type IIB, HO and HE) are regarded as different limits of a single theory tentatively called M-theory. Background One of the deepest open problems in theoretical physics is formulating a theory of quantum gravity. Such a theory incorporates both the theory of general relativity, which describes gravitation and applies to large-scale structures, and quantum mechanics or more specifically quantum field theory, which describes the other three fundamental forces that act on th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Supersymmetry Algebra
In theoretical physics, a supersymmetry algebra (or SUSY algebra) is a mathematical formalism for describing the relation between bosons and fermions. The supersymmetry algebra contains not only the Poincaré algebra and a compact subalgebra of internal symmetries, but also contains some fermionic supercharges, transforming as a sum of ''N'' real spinor representations of the Poincaré group. Such symmetries are allowed by the Haag–Łopuszański–Sohnius theorem. When ''N''>1 the algebra is said to have extended supersymmetry. The supersymmetry algebra is a semidirect sum of a central extension of the super-Poincaré algebra by a compact Lie algebra ''B'' of internal symmetries. Bosonic fields commute while fermionic fields anticommute. In order to have a transformation that relates the two kinds of fields, the introduction of a Z2-grading under which the even elements are bosonic and the odd elements are fermionic is required. Such an algebra is called a Lie superalgebr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Superspace
In supersymmetry, harmonic superspace is one way of dealing with supersymmetric theories with 8 real SUSY generators in a manifestly covariant manner. It turns out that the 8 real SUSY generators are pseudoreal, and after complexification, correspond to the tensor product of a four-dimensional Dirac spinor with the fundamental representation of SU(2)R. The quotient space SU(2)_R/U(1)_R \approx S^2 \simeq \mathbb^1, which is a 2-sphere/Riemann sphere. Harmonic superspace describes N=2 D=4, N=1 D=5, and N=(1,0) D=6 SUSY in a manifestly covariant manner. There are many possible coordinate systems over S2, but the one chosen not only involves redundant coordinates, but also happen to be a coordinatization of SU(2)_R \approx S^3. We only get S2 ''after'' a projection over U(1)_R \approx S^1. This is of course the Hopf fibration. Consider the left action of SU(2)R upon itself. We can then extend this to the space of complex valued smooth functions over SU(2)R. In particular, we have ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Projective Superspace
In supersymmetry, a theory of particle physics, projective superspace is one way of dealing with \mathcal=2 supersymmetric theories, i.e. with 8 real SUSY generators, in a manifestly covariant manner. See also * Superspace * Harmonic superspace In supersymmetry, harmonic superspace is one way of dealing with supersymmetric theories with 8 real SUSY generators in a manifestly covariant manner. It turns out that the 8 real SUSY generators are pseudoreal, and after complexification, corres ... References * Supersymmetry {{Quantum-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |