Estimation Of Distribution Algorithm
''Estimation of distribution algorithms'' (EDAs), sometimes called ''probabilistic model-building genetic algorithms'' (PMBGAs), are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates of a probabilistic model, starting with the model encoding an uninformative prior over admissible solutions and ending with the model that generates only the global optima. EDAs belong to the class of evolutionary algorithms. The main difference between EDAs and most conventional evolutionary algorithms is that evolutionary algorithms generate new candidate solutions using an ''implicit'' distribution defined by one or more variation operators, whereas EDAs use an ''explicit'' probability distribution encoded by a Bayesian network, a multivariate normal distribution, or another model class. Similarly as other evolutionary algorithms, EDA ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joint Probability Distribution
A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw-Hill Connect. Webp.274/ref> They are constructed to allow for different degrees and types of movement. Some joints, such as the knee, elbow, and shoulder, are self-lubricating, almost frictionless, and are able to withstand compression and maintain heavy loads while still executing smooth and precise movements. Other joints such as suture (joint), sutures between the bones of the skull permit very little movement (only during birth) in order to protect the brain and the sense organs. The connection between a tooth and the jawbone is also called a joint, and is described as a fibrous joint known as a gomphosis. Joints are classified both structurally and functionally. Joints play a vital role in the human body, contributing to movement, sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ant Colony Optimization Algorithms
In computer science and operations research, the ant colony optimization algorithm (ACO) is a probabilistic technique for solving computational problems that can be reduced to finding good paths through graphs. Artificial ants represent multi-agent methods inspired by the behavior of real ants. The pheromone-based communication of biological ants is often the predominant paradigm used. Combinations of artificial ants and local search algorithms have become a preferred method for numerous optimization tasks involving some sort of graph, e.g., vehicle routing and internet routing. As an example, ant colony optimization is a class of optimization algorithms modeled on the actions of an ant colony. Artificial 'ants' (e.g. simulation agents) locate optimal solutions by moving through a parameter space representing all possible solutions. Real ants lay down pheromones to direct each other to resources while exploring their environment. The simulated 'ants' similarly record th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CMA-ES
Covariance matrix adaptation evolution strategy (CMA-ES) is a particular kind of strategy for numerical optimization. evolution strategy, Evolution strategies (ES) are stochastic, Derivative-free optimization, derivative-free methods for numerical optimization of non-Linear map, linear or non-Convex function, convex continuous optimization problems. They belong to the class of evolutionary algorithms and evolutionary computation. An evolutionary algorithm is broadly based on the principle of biological evolution, namely the repeated interplay of variation (via recombination and mutation) and selection: in each generation (iteration) new individuals (candidate solutions, denoted as x) are generated by variation of the current parental individuals, usually in a stochastic way. Then, some individuals are selected to become the parents in the next generation based on their fitness or objective function value f(x). Like this, individuals with better and better f-values are generated ove ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hierarchical Clustering
In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis that seeks to build a hierarchy of clusters. Strategies for hierarchical clustering generally fall into two categories: * Agglomerative: Agglomerative: Agglomerative clustering, often referred to as a "bottom-up" approach, begins with each data point as an individual cluster. At each step, the algorithm merges the two most similar clusters based on a chosen distance metric (e.g., Euclidean distance) and linkage criterion (e.g., single-linkage, complete-linkage). This process continues until all data points are combined into a single cluster or a stopping criterion is met. Agglomerative methods are more commonly used due to their simplicity and computational efficiency for small to medium-sized datasets . * Divisive: Divisive clustering, known as a "top-down" approach, starts with all data points in a single cluster and recursively splits the clu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Family Of Sets
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set family, or a set system. Additionally, a family of sets may be defined as a function from a set I, known as the index set, to F, in which case the sets of the family are indexed by members of I. In some contexts, a family of sets may be allowed to contain repeated copies of any given member, and in other contexts it may form a proper class. A finite family of subsets of a finite set S is also called a '' hypergraph''. The subject of extremal set theory concerns the largest and smallest examples of families of sets satisfying certain restrictions. Examples The set of all subsets of a given set S is called the pow ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graphical Model
A graphical model or probabilistic graphical model (PGM) or structured probabilistic model is a probabilistic model for which a graph expresses the conditional dependence structure between random variables. Graphical models are commonly used in probability theory, statistics—particularly Bayesian statistics—and machine learning. Types of graphical models Generally, probabilistic graphical models use a graph-based representation as the foundation for encoding a distribution over a multi-dimensional space and a graph that is a compact or factorized representation of a set of independences that hold in the specific distribution. Two branches of graphical representations of distributions are commonly used, namely, Bayesian networks and Markov random fields. Both families encompass the properties of factorization and independences, but they differ in the set of independences they can encode and the factorization of the distribution that they induce. Undirected Graphical Model ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stochastic Optimization
Stochastic optimization (SO) are optimization methods that generate and use random variables. For stochastic optimization problems, the objective functions or constraints are random. Stochastic optimization also include methods with random iterates. Some hybrid methods use random iterates to solve stochastic problems, combining both meanings of stochastic optimization. Stochastic optimization methods generalize deterministic methods for deterministic problems. Methods for stochastic functions Partly random input data arise in such areas as real-time estimation and control, simulation-based optimization where Monte Carlo simulations are run as estimates of an actual system, and problems where there is experimental (random) error in the measurements of the criterion. In such cases, knowledge that the function values are contaminated by random "noise" leads naturally to algorithms that use statistical inference tools to estimate the "true" values of the function and/or make sta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Learning Rate
In machine learning and statistics, the learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of a loss function. Since it influences to what extent newly acquired information overrides old information, it metaphorically represents the speed at which a machine learning model "learns". In the adaptive control literature, the learning rate is commonly referred to as gain. In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low learning rate will either take too long to converge or get stuck in an undesirable local minimum. In order to achieve faster convergence, prevent oscillations and getting stuck in undesi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Population-based Incremental Learning
In computer science and machine learning, population-based incremental learning (PBIL) is an Optimization (mathematics), optimization algorithm, and an estimation of distribution algorithm. This is a type of genetic algorithm where the genotype of an entire population (probability Euclidean vector, vector) is evolved rather than individual members. The algorithm is proposed by Shumeet Baluja in 1994. The algorithm is simpler than a standard genetic algorithm, and in many cases leads to better results than a standard genetic algorithm. Algorithm In PBIL, genes are represented as real values in the range [0,1], indicating the probability that any particular allele appears in that gene. The PBIL algorithm is as follows: # A population is generated from the probability vector. # The fitness of each member is evaluated and ranked. # Update population genotype (probability vector) based on fittest individual. # Mutate. # Repeat steps 1–4 Source code This is a part of source code ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |