HOME





Ellipsoid Packing
In geometry, ellipsoid packing is the problem of arranging identical ellipsoid throughout three-dimensional space to fill the maximum possible fraction of space. The currently densest known packing structure for ellipsoid has two candidates, a simple monoclinic crystal with two ellipsoids of different orientations and a square-triangle crystal containing 24 ellipsoids in the fundamental cell. The former monoclinic structure can reach a maximum packing fraction around 0.77073 for ellipsoids with maximal aspect ratios larger than \sqrt. The packing fraction of the square-triangle crystal exceeds that of the monoclinic crystal for specific biaxial ellipsoids, like ellipsoids with ratios of the axes \alpha:\sqrt:1 and \alpha \in (1.365,1.5625). Any ellipsoids with aspect ratios larger than one can pack denser than spheres. See also * Packing problems * Sphere packing * Tetrahedron packing In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ellipsoid
An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation. An ellipsoid is a quadric surface;โ€Š that is, a surface that may be defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, an ellipsoid is characterized by either of the two following properties. Every planar cross section is either an ellipse, or is empty, or is reduced to a single point (this explains the name, meaning "ellipse-like"). It is bounded, which means that it may be enclosed in a sufficiently large sphere. An ellipsoid has three pairwise perpendicular axes of symmetry which intersect at a center of symmetry, called the center of the ellipsoid. The line segments that are delimited on the axes of symmetry by the ellipsoid are called the ''principal axes'', or simply axes of the ellipsoid. If the three axes have different lengths, the figure is a triaxial ellipsoi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Packing Problems
Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap. In a bin packing problem, you are given: * A ''container'', usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers may be given depending on the problem. * A set of ''objects'', some or all of which must be packed into one or more containers. The set may contain different objects with their sizes specified, or a single object of a fixed dimension that can be used repeatedly. Usually the pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sphere Packing
In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three- dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions (where the problem becomes circle packing in two dimensions, or hypersphere packing in higher dimensions) or to non-Euclidean spaces such as hyperbolic space. A typical sphere packing problem is to find an arrangement in which the spheres fill as much of the space as possible. The proportion of space filled by the spheres is called the '' packing density'' of the arrangement. As the local density of a packing in an infinite space can vary depending on the volume over which it is measured, the problem is usually to maximise the average or asymptotic density, measured over a large enough volume. For equal spheres in three dimensions, the densest pac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedron Packing
In geometry, tetrahedron packing is the problem of arranging identical regular tetrahedra throughout three-dimensional space so as to fill the maximum possible fraction of space. Currently, the best lower bound achieved on the optimal packing fraction of regular tetrahedra is 85.63%. Tetrahedra do not tile space, and an upper bound below 100% (namely, 1 โˆ’ (2.6...)ยท10โˆ’25) has been reported. Historical results Aristotle claimed that tetrahedra could fill space completely. In 2006, Conway and Torquato showed that a packing fraction about 72% can be obtained by constructing a non-Bravais lattice packing of tetrahedra (with multiple particles with generally different orientations per repeating unit), and thus they showed that the best tetrahedron packing cannot be a lattice packing (with one particle per repeating unit such that each particle has a common orientation). These packing constructions almost doubled the optimal Bravais-lattice-packing fraction 36.73% obtained ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]