HOME
*



picture info

E7 (mathematics)
In mathematics, E7 is the name of several closely related Lie groups, linear algebraic groups or their Lie algebras e7, all of which have dimension 133; the same notation E7 is used for the corresponding root lattice, which has rank 7. The designation E7 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled A''n'', B''n'', C''n'', D''n'', and five exceptional cases labeled E6, E7, E8, F4, and G2. The E7 algebra is thus one of the five exceptional cases. The fundamental group of the (adjoint) complex form, compact real form, or any algebraic version of E7 is the cyclic group Z/2Z, and its outer automorphism group is the trivial group. The dimension of its fundamental representation is 56. Real and complex forms There is a unique complex Lie algebra of type E7, corresponding to a complex group of complex dimension 133. The complex adjoint Lie group E7 of complex dimension 133 can be conside ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting poin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Complex Dimension
In mathematics, complex dimension usually refers to the dimension of a complex manifold or a complex algebraic variety. These are spaces in which the local neighborhoods of points (or of non-singular points in the case of a variety) are modeled on a Cartesian product of the form \mathbb^d for some d, and the complex dimension is the exponent d in this product. Because \mathbb can in turn be modeled by \mathbb^2, a space with complex dimension d will have real dimension 2d. That is, a smooth manifold of complex dimension d has real dimension 2d; and a complex algebraic variety of complex dimension d, away from any singular point, will also be a smooth manifold of real dimension 2d. However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Albert Algebra
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism.Springer & Veldkamp (2000) 5.8, p.153 One of them, which was first mentioned by and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation :x \circ y = \frac12 (x \cdot y + y \cdot x), where \cdot denotes matrix multiplication. Another is defined the same way, but using split octonions instead of octonions. The final is constructed from the non-split octonions using a different standard involution. Over any algebraically closed field, there is just one Albert algebra, and its automorphism group ''G'' is the simple split group of type F4.Springer & Veldkamp (2000) 7.2 (For example, the complexifications of the three Albert algebr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacques Tits
Jacques Tits () (12 August 1930 – 5 December 2021) was a Belgian-born French mathematician who worked on group theory and incidence geometry. He introduced Tits buildings, the Tits alternative, the Tits group, and the Tits metric. Life and career Tits was born in Uccle to Léon Tits, a professor, and Lousia André. Jacques attended the Athénée of Uccle and the Free University of Brussels (1834–1969), Free University of Brussels. His thesis advisor was Paul Libois, and Tits graduated with his doctorate in 1950 with the dissertation ''Généralisation des groupes projectifs basés sur la notion de transitivité''. His academic career includes professorships at the Free University of Brussels (now split into the Université Libre de Bruxelles and the Vrije Universiteit Brussel) (1962–1964), the University of Bonn (1964–1974) and the Collège de France in Paris, until becoming emeritus in 2000. He changed his citizenship to French in 1974 in order to teach at the Collèg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hans Freudenthal
Hans Freudenthal (17 September 1905 – 13 October 1990) was a Jewish-German-born Dutch mathematician. He made substantial contributions to algebraic topology and also took an interest in literature, philosophy, history and mathematics education. Biography Freudenthal was born in Luckenwalde, Brandenburg, on 17 September 1905, the son of a Jewish teacher. He was interested in both mathematics and literature as a child, and studied mathematics at the University of Berlin beginning in 1923.. He met Brouwer in 1927, when Brouwer came to Berlin to give a lecture, and in the same year Freudenthal also visited the University of Paris.. He completed his thesis work with Heinz Hopf at Berlin, defended a thesis on the ends of topological groups in 1930, and was officially awarded a degree in October 1931. After defending his thesis in 1930, he moved to Amsterdam to take up a position as assistant to Brouwer. In this pre-war period in Amsterdam, he was promoted to lecturer at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Freudenthal Magic Square
In mathematics, the Freudenthal magic square (or Freudenthal–Tits magic square) is a construction relating several Lie algebras (and their associated Lie groups). It is named after Hans Freudenthal and Jacques Tits, who developed the idea independently. It associates a Lie algebra to a pair of division algebras ''A'', ''B''. The resulting Lie algebras have Dynkin diagrams according to the table at right. The "magic" of the Freudenthal magic square is that the constructed Lie algebra is symmetric in ''A'' and ''B'', despite the original construction not being symmetric, though Vinberg's symmetric method gives a symmetric construction. The Freudenthal magic square includes all of the exceptional Lie groups apart from ''G''2, and it provides one possible approach to justify the assertion that "the exceptional Lie groups all exist because of the octonions": ''G''2 itself is the automorphism group of the octonions (also, it is in many ways like a classical Lie group because it i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octonion
In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface or blackboard bold \mathbb O. Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative. Octonions are not as well known as the quaternions and complex numbers, which are much more widely studied and used. Octonions are related to exceptional structures in mathematics, among them the Simple Lie group#Exceptional cases, exceptional Lie groups. Octonions have applications in fields such as string theory, special relativity and quantum logic. Applying the Cayley–Dickson construction to the octonions produces the sedenions. History The octonions were discovered in 1843 by J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the quotient of two '' directed lines'' in a three-dimensional space, or, equivalently, as the quotient of two vectors. Multiplication of quaternions is noncommutative. Quaternions are generally represented in the form :a + b\ \mathbf i + c\ \mathbf j +d\ \mathbf k where , and are real numbers; and , and are the ''basic quaternions''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, and crystallographic texture analysis. They can be used alongside other methods of rotation, such as Euler angles and rotation matrices, or as an alternative to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quateroctonionic Projective Plane
In mathematics, the Freudenthal magic square (or Freudenthal–Tits magic square) is a construction relating several Lie algebras (and their associated Lie groups). It is named after Hans Freudenthal and Jacques Tits, who developed the idea independently. It associates a Lie algebra to a pair of division algebras ''A'', ''B''. The resulting Lie algebras have Dynkin diagrams according to the table at right. The "magic" of the Freudenthal magic square is that the constructed Lie algebra is symmetric in ''A'' and ''B'', despite the original construction not being symmetric, though Vinberg's symmetric method gives a symmetric construction. The Freudenthal magic square includes all of the exceptional Lie groups apart from ''G''2, and it provides one possible approach to justify the assertion that "the exceptional Lie groups all exist because of the octonions": ''G''2 itself is the automorphism group of the octonions (also, it is in many ways like a classical Lie group because it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Riemannian Symmetric Space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis. In geometric terms, a complete, simply connected Riemannian manifold is a symmetric space if and only if its curvature tensor is invariant under parallel transport. More generally, a Riemannian manifold (''M'', ''g'') is said to be symmetric if and only if, for each point ''p'' of ''M'', there exists an isometry of ''M'' fixing ''p'' and acting on the tangent space T_pM as minus the identity (every symmetric space is complete, since any geodesic can be extended indefinitely via symmetries ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]