Dirichlet Series
In mathematics, a Dirichlet series is any series of the form \sum_^\infty \frac, where ''s'' is complex, and a_n is a complex sequence. It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory. The most usually seen definition of the Riemann zeta function is a Dirichlet series, as are the Dirichlet L-functions. Specifically, the Riemann zeta function ''ζ(s)'' is the Dirichlet series of the constant unit function ''u(n)'', namely: \zeta(s) = \sum_^\infty \frac = \sum_^\infty \frac = D(u, s), where ''D(u, s)'' denotes the Dirichlet series of ''u(n)''. It is conjectured that the Selberg class of series obeys the generalized Riemann hypothesis. The series is named in honor of Peter Gustav Lejeune Dirichlet. Combinatorial importance Dirichlet series can be used as generating series for counting weighted sets of objects with respect to a weight which is combined multiplicatively when taking Cartesian product ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Zeta Function
In mathematics, the prime zeta function is an analogue of the Riemann zeta function, studied by . It is defined as the following infinite series, which converges for \Re(s) > 1: :P(s)=\sum_ \frac=\frac+\frac+\frac+\frac+\frac+\cdots. Properties The Euler product for the Riemann zeta function ''ζ''(''s'') implies that : \log\zeta(s)=\sum_ \frac n which by Möbius inversion gives :P(s)=\sum_ \mu(n)\frac n When ''s'' goes to 1, we have P(s)\sim \log\zeta(s)\sim\log\left(\frac \right). This is used in the definition of Dirichlet density. This gives the continuation of ''P''(''s'') to \Re(s) > 0, with an infinite number of logarithmic singularities at points ''s'' where ''ns'' is a pole (only ''ns'' = 1 when ''n'' is a squarefree number greater than or equal to 1), or zero of the Riemann zeta function ''ζ''(.). The line \Re(s) = 0 is a natural boundary as the singularities cluster near all points of this line. If one defines a sequence :a_n=\prod_ \frac=\prod_ \fr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arithmetic Function
In number theory, an arithmetic, arithmetical, or number-theoretic function is generally any function whose domain is the set of positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of ''n''". There is a larger class of number-theoretic functions that do not fit this definition, for example, the prime-counting functions. This article provides links to functions of both classes. An example of an arithmetic function is the divisor function whose value at a positive integer ''n'' is equal to the number of divisors of ''n''. Arithmetic functions are often extremely irregular (see table), but some of them have series expansions in terms of Ramanujan's sum. Multiplicative and additive functions An arithmetic function ''a'' is * completely additive if ''a''(''mn'') = ''a''(''m'') + ''a''(''n'') for all natural numbers ''m'' and ''n''; * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Omega Function
In number theory, the prime omega functions \omega(n) and \Omega(n) count the number of prime factors of a natural number n. The number of ''distinct'' prime factors is assigned to \omega(n) (little omega), while \Omega(n) (big omega) counts the ''total'' number of prime factors with multiplicity (see arithmetic function). That is, if we have a prime factorization of n of the form n = p_1^ p_2^ \cdots p_k^ for distinct primes p_i (1 \leq i \leq k), then the prime omega functions are given by \omega(n) = k and \Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k. These prime-factor-counting functions have many important number theoretic relations. Properties and relations The function \omega(n) is additive and \Omega(n) is completely additive. Little omega has the formula \omega(n)=\sum_ 1, where notation indicates that the sum is taken over all primes that divide , without multiplicity. For example, \omega(12)=\omega(2^2 3)=2. Big omega has the formulas \Omega(n) =\sum_ 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Additive Function
In number theory, an additive function is an arithmetic function ''f''(''n'') of the positive integer variable ''n'' such that whenever ''a'' and ''b'' are coprime, the function applied to the product ''ab'' is the sum of the values of the function applied to ''a'' and ''b'':Erdös, P., and M. Kac. On the Gaussian Law of Errors in the Theory of Additive Functions. Proc Natl Acad Sci USA. 1939 April; 25(4): 206–207online/ref> f(a b) = f(a) + f(b). Completely additive An additive function ''f''(''n'') is said to be completely additive if f(a b) = f(a) + f(b) holds ''for all'' positive integers ''a'' and ''b'', even when they are not coprime. Totally additive is also used in this sense by analogy with totally multiplicative functions. If ''f'' is a completely additive function then ''f''(1) = 0. Every completely additive function is additive, but not vice versa. Examples Examples of arithmetic functions which are completely additive are: * The restriction of the Logarithm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moebius Function
Moebius, Mœbius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Friedrich Möbius (art historian) (1928–2024), German art historian and architectural historian * Theodor Möbius (1821–1890), German philologist, son of August Ferdinand * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist, grandson of August Ferdinand * Dieter Moebius (1944–2015), Swiss-born German musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics * Johann Wilhelm Möbius, a character in the play '' The Physicists'' * Moebius, the main antagonistic faction in the video game ''Xenoblade Chronicles 3'' * Mobius, or Dr. Ignatio Mobius ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Omega Function
In number theory, the prime omega functions \omega(n) and \Omega(n) count the number of prime factors of a natural number n. The number of ''distinct'' prime factors is assigned to \omega(n) (little omega), while \Omega(n) (big omega) counts the ''total'' number of prime factors with multiplicity (see arithmetic function). That is, if we have a prime factorization of n of the form n = p_1^ p_2^ \cdots p_k^ for distinct primes p_i (1 \leq i \leq k), then the prime omega functions are given by \omega(n) = k and \Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k. These prime-factor-counting functions have many important number theoretic relations. Properties and relations The function \omega(n) is additive and \Omega(n) is completely additive. Little omega has the formula \omega(n)=\sum_ 1, where notation indicates that the sum is taken over all primes that divide , without multiplicity. For example, \omega(12)=\omega(2^2 3)=2. Big omega has the formulas \Omega(n) =\sum_ 1 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ramanujan's Sum
In number theory, Ramanujan's sum, usually denoted ''cq''(''n''), is a function of two positive integer variables ''q'' and ''n'' defined by the formula : c_q(n) = \sum_ e^, where (''a'', ''q'') = 1 means that ''a'' only takes on values coprime to ''q''. Srinivasa Ramanujan mentioned the sums in a 1918 paper. In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. Notation For integers ''a'' and ''b'', a\mid b is read "''a'' divides ''b''" and means that there is an integer ''c'' such that \frac b a = c. Similarly, a\nmid b is read "''a'' does not divide ''b''". The summation symbol :\sum_f(d) means that ''d'' goes through all the positive divisors of ''m'', e.g. :\sum_f(d) = f(1) + f(2) + f(3) + f(4) + f(6) + f(12). (a,\,b) is the greatest common divisor, \phi(n) is Euler's totient function, \mu(n) is the Möbius function, and \zeta(s) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liouville Function
The Liouville lambda function, denoted by and named after Joseph Liouville, is an important arithmetic function. Its value is if is the product of an even number of prime numbers, and if it is the product of an odd number of primes. Explicitly, the fundamental theorem of arithmetic states that any positive integer can be represented uniquely as a product of powers of primes: , where are primes and the are positive integers. ( is given by the empty product.) The prime omega functions count the number of primes, with () or without () multiplicity: : \omega(n) = k, : \Omega(n) = a_1 + a_2 + \cdots + a_k. is defined by the formula : \lambda(n) = (-1)^ . is completely multiplicative since is completely additive, i.e.: . Since has no prime factors, , so . It is related to the Möbius function . Write as , where is squarefree, i.e., . Then : \lambda(n) = \mu(b). The sum of the Liouville function over the divisors of is the characteristic function of th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithmic Derivative
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function is defined by the formula \frac where is the derivative of . Intuitively, this is the infinitesimal relative change in ; that is, the infinitesimal absolute change in , namely scaled by the current value of . When is a function of a real variable , and takes real, strictly positive values, this is equal to the derivative of , or the natural logarithm of . This follows directly from the chain rule: \frac\ln f(x) = \frac \frac Basic properties Many properties of the real logarithm also apply to the logarithmic derivative, even when the function does ''not'' take values in the positive reals. For example, since the logarithm of a product is the sum of the logarithms of the factors, we have (\log uv)' = (\log u + \log v)' = (\log u)' + (\log v)' . So for positive-real-valued functions, the logarithmic derivative of a product is the sum of the logarithmic derivatives ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Von Mangoldt Function
In mathematics, the von Mangoldt function is an arithmetic function named after German mathematician Hans von Mangoldt. It is an example of an important arithmetic function that is neither multiplicative nor additive. Definition The von Mangoldt function, denoted by , is defined as :\Lambda(n) = \begin \log p & \textn=p^k \text p \text k \ge 1, \\ 0 & \text \end The values of for the first nine positive integers (i.e. natural numbers) are :0 , \log 2 , \log 3 , \log 2 , \log 5 , 0 , \log 7 , \log 2 , \log 3, which is related to . Properties The von Mangoldt function satisfies the identityApostol (1976) p.32Tenenbaum (1995) p.30 :\log(n) = \sum_ \Lambda(d). The sum is taken over all integers that divide . This is proved by the fundamental theorem of arithmetic, since the terms that are not powers of primes are equal to . For example, consider the case . Then :\begin \sum_ \Lambda(d) &= \Lambda(1) + \Lambda(2) + \Lambda(3) + \Lambda(4) + \Lambda(6) + \Lambda(12) \\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |