Dirichlet Inverse
In mathematics, Dirichlet convolution (or divisor convolution) is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Peter Gustav Lejeune Dirichlet. Definition If f , g : \mathbb\to\mathbb are two Arithmetic function, arithmetic functions, their Dirichlet convolution f*g is a new arithmetic function defined by: : (f*g)(n) \ =\ \sum_ f(d)\,g\!\left(\frac\right) \ =\ \sum_\!f(a)\,g(b), where the sum extends over all positive divisors d of n, or equivalently over all distinct pairs (a,b) of positive integers whose product is n. This product occurs naturally in the study of Dirichlet series such as the Riemann zeta function. It describes the multiplication of two Dirichlet series in terms of their coefficients: :\left(\sum_\frac\right) \left(\sum_\frac\right) \ = \ \left(\sum_\frac\right). Properties The set of arithmetic functions forms a commutative ring, the , with addition given by pointwise addition and multiplicat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet
Johann Peter Gustav Lejeune Dirichlet (; ; 13 February 1805 – 5 May 1859) was a German mathematician. In number theory, he proved special cases of Fermat's last theorem and created analytic number theory. In Mathematical analysis, analysis, he advanced the theory of Fourier series and was one of the first to give the modern formal definition of a function (mathematics), function. In mathematical physics, he studied potential theory, boundary-value problem, boundary-value problems, and heat diffusion, and hydrodynamics. Although his surname is Lejeune Dirichlet, he is commonly referred to by his mononym Dirichlet, in particular for results named after him. Biography Early life (1805–1822) Gustav Lejeune Dirichlet was born on 13 February 1805 in Düren, a town on the left bank of the Rhine which at the time was part of the First French Empire, reverting to Prussia after the Congress of Vienna in 1815. His father Johann Arnold Lejeune Dirichlet was the postmaster, merchant, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplicative Function
In number theory, a multiplicative function is an arithmetic function f of a positive integer n with the property that f(1)=1 and f(ab) = f(a)f(b) whenever a and b are coprime. An arithmetic function is said to be completely multiplicative (or totally multiplicative) if f(1)=1 and f(ab) = f(a)f(b) holds ''for all'' positive integers a and b, even when they are not coprime. Examples Some multiplicative functions are defined to make formulas easier to write: * 1(n): the constant function defined by 1(n)=1 * \operatorname(n): the identity function, defined by \operatorname(n)=n * \operatorname_k(n): the power functions, defined by \operatorname_k(n)=n^k for any complex number k. As special cases we have ** \operatorname_0(n)=1(n), and ** \operatorname_1(n)=\operatorname(n). * \varepsilon(n): the function defined by \varepsilon(n)=1 if n=1 and 0 otherwise; this is the unit function, so called because it is the multiplicative identity for Dirichlet convolution. Sometimes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jordan's Totient Function
In number theory, Jordan's totient function, denoted as J_k(n), where k is a positive integer, is a function of a positive integer, n, that equals the number of k-tuples of positive integers that are less than or equal to n and that together with n form a coprime set of k+1 integers. Jordan's totient function is a generalization of Euler's totient function, which is the same as J_1(n). The function is named after Camille Jordan. Definition For each positive integer k, Jordan's totient function J_k is multiplicative and may be evaluated as :J_k(n)=n^k \prod_\left(1-\frac\right) \,, where p ranges through the prime divisors of n. Properties * \sum_ J_k(d) = n^k. \, :which may be written in the language of Dirichlet convolutions as :: J_k(n) \star 1 = n^k\, :and via Möbius inversion as ::J_k(n) = \mu(n) \star n^k. :Since the Dirichlet generating function of \mu is 1/\zeta(s) and the Dirichlet generating function of n^k is \zeta(s-k), the series for J_k becomes ::\sum_\frac = ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pillai's Arithmetical Function
In number theory, the gcd-sum function, also called Pillai's arithmetical function, is defined for every n by :P(n)=\sum_^n\gcd(k,n) or equivalently :P(n) = \sum_ d \varphi(n/d) where d is a divisor of n and \varphi is Euler's totient function. it also can be written as :P(n) = \sum_ d \tau(d) \mu(n/d) where, \tau is the divisor function, and \mu is the Möbius function. This multiplicative arithmetical function was introduced by the Indian mathematician Subbayya Sivasankaranarayana Pillai Subbayya Sivasankaranarayana Pillai (5 April 1901 – 31 August 1950) was an Indian mathematician specialising in number theory. His contribution to Waring's problem was described in 1950 by K. S. Chandrasekharan as "almost certainly his best ... in 1933. References {{oeis, A018804 Arithmetic functions ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Liouville's Function
The Liouville lambda function, denoted by and named after Joseph Liouville, is an important arithmetic function. Its value is if is the product of an even number of prime numbers, and if it is the product of an odd number of primes. Explicitly, the fundamental theorem of arithmetic states that any positive integer can be represented uniquely as a product of powers of primes: , where are primes and the are positive integers. ( is given by the empty product.) The prime omega functions count the number of primes, with () or without () multiplicity: : \omega(n) = k, : \Omega(n) = a_1 + a_2 + \cdots + a_k. is defined by the formula : \lambda(n) = (-1)^ . is completely multiplicative since is completely additive, i.e.: . Since has no prime factors, , so . It is related to the Möbius function . Write as , where is squarefree, i.e., . Then : \lambda(n) = \mu(b). The sum of the Liouville function over the divisors of is the characteristic function of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euler's Totient Function
In number theory, Euler's totient function counts the positive integers up to a given integer that are relatively prime to . It is written using the Greek letter phi as \varphi(n) or \phi(n), and may also be called Euler's phi function. In other words, it is the number of integers in the range for which the greatest common divisor is equal to 1. The integers of this form are sometimes referred to as totatives of . For example, the totatives of are the six numbers 1, 2, 4, 5, 7 and 8. They are all relatively prime to 9, but the other three numbers in this range, 3, 6, and 9 are not, since and . Therefore, . As another example, since for the only integer in the range from 1 to is 1 itself, and . Euler's totient function is a multiplicative function, meaning that if two numbers and are relatively prime, then . This function gives the order of the multiplicative group of integers modulo (the group of units of the ring \Z/n\Z). It is also used for defining the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function ''σ''''z''(''n''), for a real or complex number ''z'', is defined as the sum of the ''z''th powers of the positive divisors of ''n''. It can be expressed in sigma notation as :\sigma_z(n)=\sum_ d^z\,\! , where is shorthand fo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Möbius Inversion Formula
In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius. A large generalization of this formula applies to summation over an arbitrary locally finite partially ordered set, with Möbius' classical formula applying to the set of the natural numbers ordered by divisibility: see incidence algebra. Statement of the formula The classic version states that if and are arithmetic functions satisfying : g(n)=\sum_f(d)\quad\textn\ge 1 then :f(n)=\sum_\mu(d)\,g\!\left(\frac\right)\quad\textn\ge 1 where is the Möbius function and the sums extend over all positive divisors of (indicated by d \mid n in the above formulae). In effect, the original can be determined given by using the inversion formula. The two sequences are said to be Möbius transforms of each other. The formula is also correct if and are f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Möbius Function
The Möbius function \mu(n) is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula. Following work of Gian-Carlo Rota in the 1960s, generalizations of the Möbius function were introduced into combinatorics, and are similarly denoted \mu(x). Definition The Möbius function is defined by :\mu(n) = \begin 1 & \text n = 1 \\ (-1)^k & \text n \text k \text \\ 0 & \text n \text > 1 \end The Möbius function can alternatively be represented as : \mu(n) = \delta_ \lambda(n), where \delta_ is the Kronecker delta, \lambda(n) is the Liouville function, Prime omega function, \omega(n) is the number of distinct prime divisors of n, and Prime omega function, \Omega(n) is the number of prime factors of n, counted with multiplicity. Another characterization ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator function of is the function \mathbf_A defined by \mathbf_\!(x) = 1 if x \in A, and \mathbf_\!(x) = 0 otherwise. Other common notations are and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, \mathbf_(x) = \left x\in A\ \right For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition Given an arbitrary set , the indicator function of a subset of is the function \mathbf_A \colon X \mapsto \ defined by \operatorname\mathbf_A\!( x ) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \,. \end The Iverson bracket provides the equivalent notation \left x\in A\ \right/math> or that can be used instead of \mathbf_\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Incidence Algebra
In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebra#Subalgebras_for_algebras_over_a_ring_or_field, Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory. Definition A locally finite poset is one in which every Partially ordered set#Intervals, closed interval :[''a, b''] = is finite set, finite. The members of the incidence algebra are the function (mathematics), functions ''f'' assigning to each empty set, nonempty interval [''a, b''] a scalar ''f''(''a'', ''b''), which is taken from the ''ring (mathematics), ring of scalars'', a commutative ring with unity. On this underlying set one defines addition and scalar multiplication pointwise, and "multiplication" in the incidence algebra is a convolution defined by :(f*g)(a, b)=\sum_f(a, x)g(x, b). A ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |