HOME





Direct Method (computational Mathematics)
In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the previous ones. A specific implementation of an iterative method, including the termination criteria, is an algorithm of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however, heuristic-based iterative methods are also common. In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of rounding errors, direct methods would deliver an exact solution (for example, solving a linear system of equations A\mathbf=\mathbf by Gaussian elimination). Iterative methods are often the only choice for nonlinear equations. How ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Mathematics
Computational mathematics is an area of mathematics devoted to the interaction between mathematics and computer computation.National Science Foundation, Division of Mathematical ScienceProgram description PD 06-888 Computational Mathematics 2006. Retrieved April 2007. A large part of computational mathematics consists roughly of using mathematics for allowing and improving computer computation in areas of science and engineering where mathematics are useful. This involves in particular algorithm design, computational complexity, numerical methods and computer algebra. Computational mathematics refers also to the use of computers for mathematics itself. This includes mathematical experimentation for establishing conjectures (particularly in number theory), the use of computers for proving theorems (for example the four color theorem), and the design and use of proof assistants. Areas of computational mathematics Computational mathematics emerged as a distinct part of applied ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangular Matrix
In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called if all the entries ''above'' the main diagonal are zero. Similarly, a square matrix is called if all the entries ''below'' the main diagonal are zero. Because matrix equations with triangular matrices are easier to solve, they are very important in numerical analysis. By the LU decomposition algorithm, an invertible matrix may be written as the product of a lower triangular matrix ''L'' and an upper triangular matrix ''U'' if and only if all its leading principal minors are non-zero. Description A matrix of the form :L = \begin \ell_ & & & & 0 \\ \ell_ & \ell_ & & & \\ \ell_ & \ell_ & \ddots & & \\ \vdots & \vdots & \ddots & \ddots & \\ \ell_ & \ell_ & \ldots & \ell_ & \ell_ \end is called a lower triangular matrix or left triangular matrix, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biconjugate Gradient Method
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations :A x= b.\, Unlike the conjugate gradient method, this algorithm does not require the matrix A to be self-adjoint, but instead one needs to perform multiplications by the conjugate transpose . The algorithm # Choose initial guess x_0\,, two other vectors x_0^* and b^*\, and a preconditioner M\, # r_0 \leftarrow b-A\, x_0\, # r_0^* \leftarrow b^*-x_0^*\, A # p_0 \leftarrow M^ r_0\, # p_0^* \leftarrow r_0^*M^\, # for k=0, 1, \ldots do ## \alpha_k \leftarrow \, ## x_ \leftarrow x_k + \alpha_k \cdot p_k\, ## x_^* \leftarrow x_k^* + \overline\cdot p_k^*\, ## r_ \leftarrow r_k - \alpha_k \cdot A p_k\, ## r_^* \leftarrow r_k^*- \overline \cdot p_k^*\, A ## \beta_k \leftarrow \, ## p_ \leftarrow M^ r_ + \beta_k \cdot p_k\, ## p_^* \leftarrow r_^*M^ + \overline\cdot p_k^*\, In the above formulation, the computed r_k\, and r_k^* sati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE