Differential Cryptanalysis
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). History The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis, but small modifications to the algorithm would make it m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential (mathematics)
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology. Introduction The term differential is used nonrigorously in calculus to refer to an infinitesimal ("infinitely small") change in some varying quantity. For example, if ''x'' is a variable, then a change in the value of ''x'' is often denoted Δ''x'' (pronounced ''delta x''). The differential ''dx'' represents an infinitely small change in the variable ''x''. The idea of an infinitely small or infinitely slow change is, intuitively, extremely useful, and there are a number of ways to make the notion mathematically precise. Using calculus, it is possible to relate the infinitely small changes of various variables to each other mathematically us ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ciphertext-only Attack
In cryptography, a ciphertext-only attack (COA) or known ciphertext attack is an attack model for cryptanalysis where the attacker is assumed to have access only to a set of ciphertexts. While the attacker has no channel providing access to the plaintext prior to encryption, in all practical ciphertext-only attacks, the attacker still has some knowledge of the plaintext. For instance, the attacker might know the language in which the plaintext is written or the expected statistical distribution of characters in the plaintext. Standard protocol data and messages are commonly part of the plaintext in many deployed systems, and can usually be guessed or known efficiently as part of a ciphertext-only attack on these systems. Attack The attack is completely successful if the corresponding plaintexts can be deduced, or even better, the key. The ability to obtain any information at all about the underlying plaintext beyond what was pre-known to the attacker is still considered a succ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Affine Mapping
Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine combination, a certain kind of constrained linear combination * Affine connection, a connection on the tangent bundle of a differentiable manifold * Affine Coordinate System, a coordinate system that can be viewed as a Cartesian coordinate system where the axes have been placed so that they are not necessarily orthogonal to each other. See tensor. * Affine differential geometry, a geometry that studies differential invariants under the action of the special affine group * Affine gap penalty, the most widely used scoring function used for sequence alignment, especially in bioinformatics * Affine geometry, a geometry characterized by parallel lines * Affine group, the group of all invertible affine transformations from any affine space over a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Satisfiability Problem
In logic and computer science, the Boolean satisfiability problem (sometimes called propositional satisfiability problem and abbreviated SATISFIABILITY, SAT or B-SAT) asks whether there exists an Interpretation (logic), interpretation that Satisfiability, satisfies a given Boolean logic, Boolean Formula (mathematical logic), formula. In other words, it asks whether the formula's variables can be consistently replaced by the values TRUE or FALSE to make the formula evaluate to TRUE. If this is the case, the formula is called ''satisfiable'', else ''unsatisfiable''. For example, the formula "''a'' AND NOT ''b''" is satisfiable because one can find the values ''a'' = TRUE and ''b'' = FALSE, which make (''a'' AND NOT ''b'') = TRUE. In contrast, "''a'' AND NOT ''a''" is unsatisfiable. SAT is the first problem that was proven to be NP-complete—this is the Cook–Levin theorem. This means that all problems in the complexity class NP (complexity), NP, which includes a wide range of natu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MISTY
In cryptography, MISTY1 (or MISTY-1) is a block cipher designed in 1995 by Mitsuru Matsui and others for Mitsubishi Electric. MISTY1 is one of the selected algorithms in the European NESSIE project, and has been among the cryptographic techniques recommended for Japanese government use by CRYPTREC in 2003; however, it was dropped to "candidate" by CRYPTREC revision in 2013. However, it was successfully broken in 2015 by Yosuke Todo using integral cryptanalysis; this attack was improved in the same year by Achiya Bar-On. "MISTY" can stand for "Mitsubishi Improved Security Technology"; it is also the initials of the researchers involved in its development: Matsui Mitsuru, Ichikawa Tetsuya, Sorimachi Toru, Tokita Toshio, and Yamagishi Atsuhiro. MISTY1 is covered by patents, although the algorithm is freely available for academic (non-profit) use in RFC 2994, and there's a GPLed implementation by Hironobu Suzuki (used by, e.g. Scramdisk). Security MISTY1 is a Feistel netwo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AES Cipher
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the AES selection process. Rijndael is a family of ciphers with different key and block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data. In the United States, AES was announced by the NIST as U.S. FIPS PUB 197 (FIPS 197) on Novemb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Least Significant Bit
In computing, bit numbering is the convention used to identify the bit positions in a binary number. Bit significance and indexing In computing, the least significant bit (LSb) is the bit position in a binary integer representing the lowest-order place of the integer. Similarly, the most significant bit (MSb) represents the highest-order place of the binary integer. The LSb is sometimes referred to as the ''low-order bit''. Due to the convention in positional notation of writing less significant digits further to the right, the LSb also might be referred to as the ''right-most bit''. The MSb is similarly referred to as the ''high-order bit'' or ''left-most bit''. In both cases, the LSb and MSb correlate directly to the least significant digit and most significant digit of a decimal integer. Bit indexing correlates to the positional notation of the value in base 2. For this reason, bit index is not affected by how the value is stored on the device, such as the value's byte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Advanced Encryption Standard
The Advanced Encryption Standard (AES), also known by its original name Rijndael (), is a specification for the encryption of electronic data established by the U.S. National Institute of Standards and Technology (NIST) in 2001. AES is a variant of the Rijndael block cipher developed by two Belgium, Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted a proposal to NIST during the Advanced Encryption Standard process, AES selection process. Rijndael is a family of ciphers with different key size, key and Block size (cryptography), block sizes. For AES, NIST selected three members of the Rijndael family, each with a block size of 128 bits, but three different key lengths: 128, 192 and 256 bits. AES has been adopted by the Federal government of the United States, U.S. government. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is a symmetric-key algorithm, meaning the same key is used for both encrypting ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Brute Force Attack
In cryptography, a brute-force attack or exhaustive key search is a cryptanalytic attack that consists of an attacker submitting many possible Key (cryptography), keys or passwords with the hope of eventually guessing correctly. This strategy can theoretically be used to break any form of encryption that is not information-theoretically secure. However, in a properly designed cryptosystem the chance of successfully guessing the key is negligible. When Password cracking, cracking passwords, this method is very fast when used to check all short passwords, but for longer passwords other methods such as the dictionary attack are used because a brute-force search takes too long. Longer passwords, passphrases and keys have more possible values, making them exponentially more difficult to crack than shorter ones due to diversity of characters. Brute-force attacks can be made less effective by Obfuscation (software), obfuscating the data to be encoded making it more difficult for an att ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Randomness
In common usage, randomness is the apparent or actual lack of definite pattern or predictability in information. A random sequence of events, symbols or steps often has no order and does not follow an intelligible pattern or combination. Individual random events are, by definition, unpredictable, but if there is a known probability distribution, the frequency of different outcomes over repeated events (or "trials") is predictable.Strictly speaking, the frequency of an outcome will converge almost surely to a predictable value as the number of trials becomes arbitrarily large. Non-convergence or convergence to a different value is possible, but has probability zero. Consistent non-convergence is thus evidence of the lack of a fixed probability distribution, as in many evolutionary processes. For example, when throwing two dice, the outcome of any particular roll is unpredictable, but a sum of 7 will tend to occur twice as often as 4. In this view, randomness is not haphaza ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cipher
In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is ''encipherment''. To encipher or encode is to convert information into cipher or code. In common parlance, "cipher" is synonymous with "code (cryptography), code", as they are both a set of steps that encrypt a message; however, the concepts are distinct in cryptography, especially classical cryptography. Codes generally substitute different length strings of characters in the output, while ciphers generally substitute the same number of characters as are input. A code maps one meaning with another. Words and phrases can be coded as letters or numbers. Codes typically have direct meaning from input to key. Codes primarily function to save time. Ciphers are algorithmic. The given input must follow the cipher's process to be solved. Ciphers are commonly used to encrypt written info ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |