Diagonal Argument (proof Technique)
   HOME





Diagonal Argument (proof Technique)
Diagonal argument can refer to: * Diagonal argument (proof technique), proof techniques used in mathematics. A diagonal argument, in mathematics, is a technique employed in the proofs of the following theorems: *Cantor's diagonal argument (the earliest) *Cantor's theorem *Russell's paradox *Diagonal lemma ** Gödel's first incompleteness theorem **Tarski's undefinability theorem *Halting problem *Kleene's recursion theorem In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 ... See also * Diagonalization (other) {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor's Diagonal Argument
Cantor's diagonal argument (among various similar namesthe diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbersinformally, that there are sets which in some sense contain more elements than there are positive integers. Such sets are now called uncountable sets, and the size of infinite sets is treated by the theory of cardinal numbers, which Cantor began. Georg Cantor published this proof in 1891, English translation: but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. However, it demonstrates a general technique that has since been used in a wide range of proofs, including the first of Gödel's incompleteness theorems and Turing's answer to the ''Entscheidungsproblem''. Diagonalization arguments ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cantor's Theorem
In mathematical set theory, Cantor's theorem is a fundamental result which states that, for any Set (mathematics), set A, the set of all subsets of A, known as the power set of A, has a strictly greater cardinality than A itself. For finite sets, Cantor's theorem can be seen to be true by simple enumeration of the number of subsets. Counting the empty set as a subset, a set with n elements has a total of 2^n subsets, and the theorem holds because 2^n > n for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite set, infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century. Cantor's theorem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Russell's Paradox
In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox published by the British philosopher and mathematician, Bertrand Russell, in 1901. Russell's paradox shows that every set theory that contains an unrestricted comprehension principle leads to contradictions. According to the unrestricted comprehension principle, for any sufficiently well-defined property, there is the set of all and only the objects that have that property. Let ''R'' be the set of all sets that are not members of themselves. (This set is sometimes called "the Russell set".) If ''R'' is not a member of itself, then its definition entails that it is a member of itself; yet, if it is a member of itself, then it is not a member of itself, since it is the set of all sets that are not members of themselves. The resulting contradiction is Russell's paradox. In symbols: : Let R = \. Then R \in R \iff R \not \in R. Russell also showed that a version of the paradox co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Diagonal Lemma
In mathematical logic, the diagonal lemma (also known as diagonalization lemma, self-reference lemma or fixed point theorem) establishes the existence of self-referential sentences in certain formal theories. A particular instance of the diagonal lemma was used by Kurt Gödel in 1931 to construct his proof of the incompleteness theorems as well as in 1933 by Tarski to prove his undefinability theorem. In 1934, Carnap was the first to publish the diagonal lemma at some level of generality. The diagonal lemma is named in reference to Cantor's diagonal argument in set and number theory. The diagonal lemma applies to any sufficiently strong theories capable of representing the diagonal function. Such theories include first-order Peano arithmetic \mathsf, the weaker Robinson arithmetic \mathsf as well as any theory containing \mathsf (i.e. which interprets it). A common statement of the lemma (as given below) makes the stronger assumption that the theory can represent all recurs ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Incompleteness Theorems
Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible. The first incompleteness theorem states that no consistency, consistent system of axioms whose theorems can be listed by an effective procedure (i.e. an algorithm) is capable of Mathematical proof, proving all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be statements about natural numbers that are true, but that are unprovable within the system. The second incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own consistency. Employing a Ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tarski's Undefinability Theorem
Tarski's undefinability theorem, stated and proved by Alfred Tarski in 1933, is an important limitative result in mathematical logic, the foundations of mathematics, and in formal semantics. Informally, the theorem states that "arithmetical truth cannot be defined in arithmetic". The theorem applies more generally to any sufficiently strong formal system, showing that truth in the standard model of the system cannot be defined within the system. History In 1931, Kurt Gödel published the incompleteness theorems, which he proved in part by showing how to represent the syntax of formal logic within first-order arithmetic. Each expression of the formal language of arithmetic is assigned a distinct number. This procedure is known variously as Gödel numbering, ''coding'' and, more generally, as arithmetization. In particular, various ''sets'' of expressions are coded as sets of numbers. For various syntactic properties (such as ''being a formula'', ''being a sentence'', etc.), these s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Halting Problem
In computability theory (computer science), computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is ''Undecidable problem, undecidable'', meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. The problem comes up often in discussions of computability since it demonstrates that some functions are mathematically Definable set, definable but not Computable function, computable. A key part of the formal statement of the problem is a mathematical definition of a computer and program, usually via a Turing machine. The proof then shows, for any program that might determine whether programs halt, that a "pathological" program exists for which makes an incorrect determination. Specifically, is the program that, when called with some input, passes its own s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kleene's Recursion Theorem
In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book ''Introduction to Metamathematics''. A related theorem, which constructs fixed points of a computable function, is known as Rogers's theorem and is due to Hartley Rogers, Jr. The recursion theorems can be applied to construct fixed points of certain operations on computable functions, to generate quines, and to construct functions defined via recursive definitions. Notation The statement of the theorems refers to an admissible numbering \varphi of the partial recursive functions, such that the function corresponding to index e is \varphi_e. If F and G are partial functions on the natural numbers, the notation F \simeq G indicates that, for each ''n'', either F(n) and G(n) are both defined and are equal, or else F(n) and G(n) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]