Decision Stump
A decision stump is a machine learning model consisting of a one-level decision tree. That is, it is a decision tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves). A decision stump makes a prediction based on the value of just a single input feature. Sometimes they are also called 1-rules. Depending on the type of the input feature, several variations are possible. For nominal features, one may build a stump which contains a leaf for each possible feature value or a stump with the two leaves, one of which corresponds to some chosen category, and the other leaf to all the other categories.This is what has been implemented in Weka's DecisionStump classifier. For binary features these two schemes are identical. A missing value may be treated as a yet another category. For continuous features, usually, some threshold feature value is selected, and the stump contains two leaves — for values below and above the threshold. However, r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning Model
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decision Tree Learning
Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations. Tree models where the target variable can take a discrete set of values are called Statistical classification, classification decision tree, trees; in these tree structures, leaf node, leaves represent class labels and branches represent Logical conjunction, conjunctions of features that lead to those class labels. Decision trees where the target variable can take continuous values (typically real numbers) are called regression analysis, regression decision tree, trees. More generally, the concept of regression tree can be extended to any kind of object equipped with pairwise dissimilarities such as categorical sequences. Decision trees are among the most popular machine learning algorithms given their intelligibility and simplic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Feature (machine Learning)
In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks. Features are usually numeric, but other types such as strings and graphs are used in syntactic pattern recognition, after some pre-processing step such as one-hot encoding. The concept of "features" is related to that of explanatory variables used in statistical techniques such as linear regression. Feature types In feature engineering, two types of features are commonly used: numerical and categorical. Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly. Categorical features are discrete values that can be grouped into ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
O'Reilly Media
O'Reilly Media, Inc. (formerly O'Reilly & Associates) is an American learning company established by Tim O'Reilly that provides technical and professional skills development courses via an online learning platform. O'Reilly also publishes books about programming and other technical content. Its distinctive brand features a woodcut of an animal on many of its book covers. The company was known as a popular tech conference organizer for more than 20 years before closing the live conferences arm of its business. Company Early days The company began in 1978 as a private consulting firm doing technical writing, based in the Cambridge, Massachusetts area. In 1984, it began to retain publishing rights on manuals created for Unix vendors. A few 70-page "Nutshell Handbooks" were well-received, but the focus remained on the consulting business until 1988. After a conference displaying O'Reilly's preliminary Xlib manuals attracted significant attention, the company began increas ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Weka (machine Learning)
The weka, also known as the Māori hen or woodhen (''Gallirallus australis'') is a flightless bird species of the rail family. It is endemic to New Zealand. Some authorities consider it as the only extant member of the genus '' Gallirallus''. Four subspecies are recognized but only two (northern/southern) are supported by genetic evidence. The weka are sturdy brown birds about the size of a chicken. As omnivores, they feed mainly on invertebrates and fruit. Weka usually lay eggs between August and January; both sexes help to incubate. Description Weka are large rails. They are predominantly rich brown mottled with black and grey; the brown shade varies from pale to dark depending on subspecies. The male is the larger sex at in length and in weight. Females measure in length and weigh . The reduced wingspan ranges from . The relatively large, reddish-brown beak is about long, stout and tapered, and used as a weapon. The pointed tail is near-constantly being flicked, a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning Ensemble
In statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives. Overview Supervised learning algorithms search through a hypothesis space to find a suitable hypothesis that will make good predictions with a particular problem. Even if this space contains hypotheses that are very well-suited for a particular problem, it may be very difficult to find a good one. Ensembles combine multiple hypotheses to form one which should be theoretically better. ''Ensemble learning'' trains two or more machine learning algorithms on a specific classification or regression task. The algorithms with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bootstrap Aggregating
Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms. It also reduces variance and overfitting. Although it is usually applied to decision tree methods, it can be used with any type of method. Bagging is a special case of the ensemble averaging approach. Description of the technique Given a standard training set D of size n, bagging generates m new training sets D_i, each of size n', by sampling from D uniformly and with replacement. By sampling with replacement, some observations may be repeated in each D_i. If n'=n, then for large n the set D_i is expected to have the fraction (1 - 1/'' e'') (~63.2%) of the unique samples of D, the rest being duplicates. This kind of sample is known as a bootstrap sample. Sampling with replacement ensures each bootstrap is independent from its peers, as it do ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boosting (meta-algorithm)
In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. The concept of boosting is based on the question posed by Kearns and Valiant (1988, 1989):Michael Kearns(1988)''Thoughts on Hypothesis Boosting'' Unpublished manuscript (Machine Learning class project, December 1988) "Can a set of weak learners create a single strong learner?" A weak learner is defined as a classifier that is only slightly correlated with the true classification. A strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire answered the question in the affirmative in a paper published in 1990. This has had significant ramifications in machine learning and statistics, most notably leading to the developm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Viola–Jones Object Detection Framework
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones (scientist), Michael Jones. It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers. Each classifier is a single perceptron with several binary masks (Haar features). To detect faces in an image, a sliding window is computed over the image. For each image, the classifiers are applied. If at any point, a classifier outputs "no face detected", then the window is considered to contain no face. Otherwise, if all classifiers output "face detected", then the window is considered to contain a face. The algorithm is efficient for its time, able to detect faces in 384 by 288 pixel images at 15 frames per second on a conventional 700 MHz Intel Pentium III. It is also robust, achieving high precision and recall. While it h ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AdaBoost
AdaBoost (short for Adaptive Boosting) is a statistical classification meta-algorithm formulated by Yoav Freund and Robert Schapire in 1995, who won the 2003 Gödel Prize for their work. It can be used in conjunction with many types of learning algorithm to improve performance. The output of multiple ''weak learners'' is combined into a weighted sum that represents the final output of the boosted classifier. Usually, AdaBoost is presented for binary classification, although it can be generalized to multiple classes or bounded intervals of real values. AdaBoost is adaptive in the sense that subsequent weak learners (models) are adjusted in favor of instances misclassified by previous models. In some problems, it can be less susceptible to overfitting than other learning algorithms. The individual learners can be weak, but as long as the performance of each one is slightly better than random guessing, the final model can be proven to converge to a strong learner. Although AdaBo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
International Conference On Machine Learning
The International Conference on Machine Learning (ICML) is a leading international academic conference in machine learning. Along with NeurIPS and ICLR, it is one of the three primary conferences of high impact in machine learning and artificial intelligence research. It is supported by the International Machine Learning Society (IMLS). Precise dates vary year to year, but paper submissions are generally due at the end of January, and the conference is generally held the following July. The first ICML was held 1980 in Pittsburgh. Locations * ICML 2026 Seoul, South Korea * ICML 2025 Vancouver, Canada * ICML 2024 Vienna, Austria * ICML 2023 Honolulu, United States * ICML 2022 Baltimore, United States * ICML 2021 Vienna, Austria (virtual conference) * ICML 2020 Vienna, Austria (virtual conference) * ICML 2019 Los Angeles, United States * ICML 2018 Stockholm, Sweden * ICML 2017 Sydney, Australia * ICML 2016 New York City, United States * ICML 2015 Lille, France * ICML ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |