Plutonium Compounds
   HOME



picture info

Plutonium Compounds
Plutonium compounds are compounds containing the element plutonium (Pu). At room temperature, pure plutonium is silvery in color but gains a tarnish when oxidized. The element displays four common ionic oxidation states in aqueous solution and one rare one: * Pu(III), as Pu3+ (blue lavender) * Pu(IV), as Pu4+ (yellow brown) * Pu(V), as (light pink) * Pu(VI), as (pink orange) * Pu(VII), as (green)-the heptavalent ion is rare. The color shown by plutonium solutions depends on both the oxidation state and the nature of the acid anion. It is the acid anion that influences the degree of complexing—how atoms connect to a central atom—of the plutonium species. Additionally, the formal +2 oxidation state of plutonium is known in the complex (2.2.2-cryptand) uIICp″3 Cp″ = C5H3(SiMe3)2. A +8 oxidation state is possible as well in the volatile tetroxide . Though it readily decomposes via a reduction mechanism similar to , can be stabilized in alkaline solutions and chloroform. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plutonium In Solution
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous. Plutonium was first synthesized and isolated in late 1940 and early 1941, by deuteron bombardment of uranium-238 in the cyclotron at the University of California, Berkeley. First, neptunium-238 (half-life 2.1 days) was synthesized, which then beta-decayed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since uranium had been named after the planet Uranus and neptuniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Perchloric Acid
Perchloric acid is a mineral acid with the formula H Cl O4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures. History Perchloric acid was first synthesized (together with potassium perchlorate) by Austrian chemist and called "oxygenated chloric acid" in mid-1810s. French pharmacist Georges-Simon Serullas introduced the modern designation along with discovering its solid monohydrate, which he mistook for an anhydride. Berzelius produced dilute perchloric acid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plutonium(III) Chloride
Plutonium(III) chloride is a chemical compound with the formula PuCl3. This ionic plutonium salt can be prepared by reacting the metal with hydrochloric acid. Structure Plutonium atoms in crystalline PuCl3 are 9 coordinate, and the structure is tricapped trigonal prismatic. It crystallizes as the trihydrate, and forms lavender-blue solutions in water.John H. Burns, J. R. Peterson, J. N. Stevenson: "Crystallographic Studies of some Transuranic Trihalides: 239PuCl3, 244CmBr3, 249BkBr3 and 249CfBr3", ''Journal of Inorganic and Nuclear Chemistry'' 1975, ''37 (3)'', 743–749; . Safety As with all plutonium compounds, it is subject to control under the Nuclear Non-Proliferation Treaty. Due to the radioactivity of plutonium, all of its compounds, PuCl3 included, are warm to the touch. Such contact is not recommended, since touching the material may result in serious injury. References

Plutonium(III) compounds Nuclear materials Chlorides Actinide halides {{nuclear-t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Plutonium(III) Fluoride
Plutonium(III) fluoride or plutonium trifluoride is the chemical compound composed of plutonium and fluorine with the formula PuF3. This salt forms violet crystals. Plutonium(III) fluoride has the LaF3 structure where the coordination around the plutonium atoms is complex and usually described as tri-capped trigonal prismatic.Wells A.F. (1984) ''Structural Inorganic Chemistry'' 5th edition Oxford Science Publications . Reactions A plutonium(III) fluoride precipitation method has been investigated as an alternative to the typical plutonium peroxide method of recovering plutonium from solution, such as that from a nuclear reprocessing plant. A 1957 study by the Los Alamos National Laboratory reported a less effective recovery than the traditional method, while a more recent study sponsored by the United States Office of Scientific and Technical Information The Office of Scientific and Technical Information (OSTI) is a component of the Office of Science within the U.S. Depart ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chemical Compound
A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken or new bonds formed or both. There are four major types of compounds, distinguished by how the constituent atoms are bonded together. Molecular compounds are held together by covalent bonds; ionic compounds are held together by ionic bonds; intermetallic compounds are held together by metallic bonds; coordination complexes are held together by coordinate covalent bonds. Non-stoichiometric compounds form a disputed marginal case. A chemical formula specifies the number of atoms of each element in a compound molecule, usin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Halogen
The halogens () are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and the radioactive elements astatine (At) and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group 17. The word "halogen" means "salt former" or "salt maker". When halogens react with metals, they produce a wide range of salts, including calcium fluoride, sodium chloride (common table salt), silver bromide and potassium iodide. The group of halogens is the only periodic table group that contains elements in three of the main states of matter at standard temperature and pressure, though not far above room temperature the same becomes true of groups 1 and 15, assuming white phosphorus is taken as the standard state.This could also be the case for group 12, al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Plutonium Hydride
Plutonium hydride is a non-stoichiometric chemical compound with the formula PuH. It is one of two characterized hydrides of plutonium; the other is PuH.Gerd Meyer, 1991, Synthesis of Lanthanide and Actinide Compounds Springer, . PuH is non-stoichiometric Non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having chemical element, elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); ... with a composition range of PuH – PuH. Metastable stoichiometries with an excess of hydrogen (PuH – PuH) can also be formed. PuH has a cubic structure. It is readily formed from the elements at 1 atmosphere at 100–200°C: When the stoichiometry is close to PuH it has a silver appearance, but gets blacker as the hydrogen content increases, additionally the color change is associated with a reduction in conductivity. :Pu + H → PuH Studies of the reaction of plutonium metal w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydride
In chemistry, a hydride is formally the anion of hydrogen (H−), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all chemical compound, compounds containing covalent bond, covalently bound H atoms. In this broad and potentially archaic sense, water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. In covalent compounds, it implies hydrogen is attached to a less electronegative chemical element, element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed. Almost all of the elements form Binary compounds of hydrogen, binary compounds with hydrogen, the exceptions being helium, He, neon, Ne, argon, Ar, krypton, Kr, promethium, Pm, osmium, Os, iridium, Ir, radon, Rn, francium, Fr, and radium, Ra. exotic atom#exotic molecules, Exotic molecules ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Oxide
An oxide () is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion (anion bearing a net charge of −2) of oxygen, an O2− ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of (called a passivation layer) that protects the foil from further oxidation.Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. . Stoichiometry Oxides are extraordinarily diverse in terms of stoichiometries (the measurable relationship between reactants and chemical equations of an equation or reaction) and in terms of the structures of each stoichiometry. Most elements form oxides of more than one stoichiometry. A well known example is carbon monoxide and carbon dioxide.Greenwood, N. N.; & Earnsh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Argon
Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abundant as water vapor (which averages about 4000 ppmv, but varies greatly), 23 times as abundant as carbon dioxide (400 ppmv), and more than 500 times as abundant as neon (18 ppmv). Argon is the most abundant noble gas in Earth's crust, comprising 0.00015% of the crust. Nearly all argon in Earth's atmosphere is radiogenic argon-40, derived from the decay of potassium-40 in Earth's crust. In the universe, argon-36 is by far the most common argon isotope, as it is the most easily produced by stellar nucleosynthesis in supernovas. The name "argon" is derived from the Greek word , neuter singular form of meaning 'lazy' or 'inactive', as a reference to the fact that the element undergoes almost no chemical reactions. The complete oc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

96602765
Year 966 ( CMLXVI) was a common year starting on Monday of the Julian calendar. Events By place Byzantine Empire * 23 June - Byzantine-Arab War: A prisoner exchange occurs at the border between the Byzantine Empire and the Emirate of Aleppo at Samosata, headed by Emperor Nikephoros II and Sayf al-Dawla, the Emir of Aleppo. The Emirate receives 3,000 captured prisoners from the region of Cilicia, after its conquest by the Byzantine Emperor, as well as the poet Abu Firas, who had been previously held prisoner by the Byzantines. Europe * Spring – King Lothair III marries Princess Emma of Italy (the only daughter of Adelaide of Burgundy—second wife of Emperor Otto I (the Great), from her first marriage with King Lothair II, member of the Bosonid dynasty). Lothair strengthens his ties with the Holy Roman Empire. He temporarily remains in control of the cities of Arras and Douai. The latter becomes a flourishing textile market centre during the Middle Ages. * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plutonium Pyrophoricity
Plutonium is a chemical element; it has symbol Pu and atomic number 94. It is a silvery-gray actinide metal that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous. Plutonium was first synthesized and isolated in late 1940 and early 1941, by deuteron bombardment of uranium-238 in the cyclotron at the University of California, Berkeley. First, neptunium-238 (half-life 2.1 days) was synthesized, which then beta-decayed to form the new element with atomic number 94 and atomic weight 238 (half-life 88 years). Since uranium had been named after the planet Uranus and neptuniu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]