Logic In Computer Science
   HOME



picture info

Logic In Computer Science
Logic in computer science covers the overlap between the field of logic and that of computer science. The topic can essentially be divided into three main areas: * Theoretical foundations and analysis * Use of computer technology to aid logicians * Use of concepts from logic for computer applications Theoretical foundations and analysis Logic plays a fundamental role in computer science. Some of the key areas of logic that are particularly significant are computability theory (formerly called recursion theory), modal logic and category theory. The theory of computation is based on concepts defined by logicians and mathematicians such as Alonzo Church and Alan Turing. Church first showed the existence of Undecidable problem, algorithmically unsolvable problems using his notion of lambda-definability. Turing gave the first compelling analysis of what can be called a mechanical procedure and Kurt Gödel asserted that he found Turing's analysis "perfect.". In addition some other ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Academic Conference
An academic conference or scientific conference (also congress, symposium, workshop, or meeting) is an Convention (meeting), event for researchers (not necessarily academics) to present and discuss their scholarly work. Together with academic journal, academic or scientific journals and preprint archives, conferences provide an important channel for exchange of information between researchers. Further benefits of participating in academic conferences include learning effects in terms of presentation skills and "academic Habitus (sociology), habitus", receiving feedback from peers for one's own research, the possibility to engage in informal communication with peers about work opportunities and collaborations, and getting an overview of current research in one or more Academic discipline, disciplines. The first international academic conferences and congresses appeared in 19th century. Overview Conferences usually encompass various presentations. They tend to be short and conci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

First-order Logic
First-order logic, also called predicate logic, predicate calculus, or quantificational logic, is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all humans are mortal", in first-order logic one can have expressions in the form "for all ''x'', if ''x'' is a human, then ''x'' is mortal", where "for all ''x"'' is a quantifier, ''x'' is a variable, and "... ''is a human''" and "... ''is mortal''" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic. A theory about a topic, such as set theory, a theory for groups,A. Tarski, ''Undecidable Theories'' (1953), p. 77. Studies in Logic and the Foundation of Mathematics, North-Holland or a formal theory o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Paradigm
A programming paradigm is a relatively high-level way to conceptualize and structure the implementation of a computer program. A programming language can be classified as supporting one or more paradigms. Paradigms are separated along and described by different dimensions of programming. Some paradigms are about implications of the execution model, such as allowing Side effect (computer science), side effects, or whether the sequence of operations is defined by the execution model. Other paradigms are about the way code is organized, such as grouping into units that include both state and behavior. Yet others are about Syntax (programming languages), syntax and Formal grammar, grammar. Some common programming paradigms include (shown in hierarchical relationship): * imperative programming, Imperative code directly controls Control flow, execution flow and state change, explicit statements that change a program state ** procedural programming, procedural organized as function (c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Logic Programming
Logic programming is a programming, database and knowledge representation paradigm based on formal logic. A logic program is a set of sentences in logical form, representing knowledge about some problem domain. Computation is performed by applying logical reasoning to that knowledge, to solve problems in the domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of ''clauses'': :A :- B1, ..., Bn. and are read as declarative sentences in logical form: :A if B1 and ... and Bn. A is called the ''head'' of the rule, B1, ..., Bn is called the ''body'', and the Bi are called '' literals'' or conditions. When n = 0, the rule is called a ''fact'' and is written in the simplified form: :A. Queries (or goals) have the same syntax as the bodies of rules and are commonly written in the form: :?- B1, ..., Bn. In the simplest case of Horn clauses (or "definite" clauses), all ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Centre De Recherches Mathématiques
The Centre de recherches mathématiques (CRM) is the first mathematical research institute in Canada, located at the Université de Montréal. The CRM has ten research laboratories, one in each of: mathematical analysis, number theory and symbolic computation, differential geometry and topology, discrete mathematics and combinatorics, applied mathematics, neuroimaging, mathematical physics, statistics, probability theory and quantum computing A quantum computer is a computer that exploits quantum mechanical phenomena. On small scales, physical matter exhibits properties of wave-particle duality, both particles and waves, and quantum computing takes advantage of this behavior using s .... Each year it awards four of the main mathematical sciences prizes in Canada: the CRM–Fields–PIMS prize, which is the most prestigious award given in Canada in mathematics; the Aisenstadt Prize, awarded to a young outstanding Canadian mathematician; the CRM–SSC Prize,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Programming Language Semantics
In programming language theory, semantics is the rigorous mathematical study of the meaning of programming languages. Semantics assigns computational meaning to valid strings in a programming language syntax. It is closely related to, and often crosses over with, the semantics of mathematical proofs. Semantics describes the processes a computer follows when executing a program in that specific language. This can be done by describing the relationship between the input and output of a program, or giving an explanation of how the program will be executed on a certain platform, thereby creating a model of computation. History In 1967, Robert W. Floyd published the paper ''Assigning meanings to programs''; his chief aim was "a rigorous standard for proofs about computer programs, including proofs of correctness, equivalence, and termination". Floyd further wrote: A semantic definition of a programming language, in our approach, is founded on a syntactic definition. It must ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transition System
In theoretical computer science, a transition system is a concept used in the study of computation. It is used to describe the potential behavior of discrete systems. It consists of states and transitions between states, which may be labeled with labels chosen from a set; the same label may appear on more than one transition. If the label set is a singleton, the system is essentially unlabeled, and a simpler definition that omits the labels is possible. Transition systems coincide mathematically with abstract rewriting systems (as explained further in this article) and directed graphs. They differ from finite-state automata in several ways: * The set of states is not necessarily finite, or even countable. * The set of transitions is not necessarily finite, or even countable. * No "start" state or "final" states are given. Transition systems can be represented as directed graphs. Formal definition Formally, a transition system is a pair (S, T) where S is a set of states ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Type System
In computer programming, a type system is a logical system comprising a set of rules that assigns a property called a ''type'' (for example, integer, floating point, string) to every '' term'' (a word, phrase, or other set of symbols). Usually the terms are various language constructs of a computer program, such as variables, expressions, functions, or modules. A type system dictates the operations that can be performed on a term. For variables, the type system determines the allowed values of that term. Type systems formalize and enforce the otherwise implicit categories the programmer uses for algebraic data types, data structures, or other data types, such as "string", "array of float", "function returning boolean". Type systems are often specified as part of programming languages and built into interpreters and compilers, although the type system of a language can be extended by optional tools that perform added checks using the language's original type synta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intuitionistic Logic
Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of excluded middle and double negation elimination, which are fundamental inference rules in classical logic. Formalized intuitionistic logic was originally developed by Arend Heyting to provide a formal basis for L. E. J. Brouwer's programme of intuitionism. From a proof-theoretic perspective, Heyting’s calculus is a restriction of classical logic in which the law of excluded middle and double negation elimination have been removed. Excluded middle and double negation elimination can still be proved for some propositions on a case by case basis, however, but do not hold universally as they do with classical logic. The standard explanation of intuitionistic logic is the BHK interpre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simply Typed Lambda Calculus
The simply typed lambda calculus (), a form of type theory, is a typed interpretation of the lambda calculus with only one type constructor () that builds function types. It is the canonical and simplest example of a typed lambda calculus. The simply typed lambda calculus was originally introduced by Alonzo Church in 1940 as an attempt to avoid paradoxical use of the untyped lambda calculus. The term ''simple type'' is also used to refer to extensions of the simply typed lambda calculus with constructs such as products, coproducts or natural numbers ( System T) or even full recursion (like PCF). In contrast, systems that introduce polymorphic types (like System F) or dependent types (like the Logical Framework) are not considered ''simply typed''. The simple types, except for full recursion, are still considered ''simple'' because the Church encodings of such structures can be done using only \to and suitable type variables, while polymorphism and dependency cannot. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Formal Proof
In logic and mathematics, a formal proof or derivation is a finite sequence of sentences (known as well-formed formulas when relating to formal language), each of which is an axiom, an assumption, or follows from the preceding sentences in the sequence, according to the rule of inference. It differs from a natural language argument in that it is rigorous, unambiguous and mechanically verifiable. If the set of assumptions is empty, then the last sentence in a formal proof is called a theorem of the formal system. The notion of theorem is generally effective, but there may be no method by which we can reliably find proof of a given sentence or determine that none exists. The concepts of Fitch-style proof, sequent calculus and natural deduction are generalizations of the concept of proof. The theorem is a syntactic consequence of all the well-formed formulas preceding it in the proof. For a well-formed formula to qualify as part of a proof, it must be the result of applying a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Curry–Howard Correspondence
In programming language theory and proof theory, the Curry–Howard correspondence is the direct relationship between computer programs and mathematical proofs. It is also known as the Curry–Howard isomorphism or equivalence, or the proofs-as-programs and propositions- or formulae-as-types interpretation. It is a generalization of a syntactic analogy between systems of formal logic and computational calculi that was first discovered by the American mathematician Haskell Curry and the logician William Alvin Howard. It is the link between logic and computation that is usually attributed to Curry and Howard, although the idea is related to the operational interpretation of intuitionistic logic given in various formulations by L. E. J. Brouwer, Arend Heyting and Andrey Kolmogorov (see Brouwer–Heyting–Kolmogorov interpretation) and Stephen Kleene (see Realizability). The relationship has been extended to include category theory as the three-way Curry–Howard–Lambe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]