Langlands Program
   HOME





Langlands Program
In mathematics, the Langlands program is a set of conjectures about connections between number theory, the theory of automorphic forms, and geometry. It was proposed by . It seeks to relate the structure of Galois groups in algebraic number theory to automorphic forms and, more generally, the representation theory of algebraic groups over local fields and adeles. It was described by Edward Frenkel as the " grand unified theory of mathematics." Background The Langlands program is built on existing ideas: the philosophy of cusp forms formulated a few years earlier by Harish-Chandra and , the work and Harish-Chandra's approach on semisimple Lie groups, and in technical terms the trace formula of Selberg and others. What was new in Langlands' work, besides technical depth, was the proposed connection to number theory, together with its rich organisational structure hypothesised (so-called functoriality). Harish-Chandra's work exploited the principle that what can be d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Group
In mathematics, a simple Lie group is a connected space, connected nonabelian group, non-abelian Lie group ''G'' which does not have nontrivial connected normal subgroups. The list of simple Lie groups can be used to read off the list of simple Lie algebras and Riemannian symmetric spaces. Together with the commutative Lie group of the real numbers, \mathbb, and that of the unit-magnitude complex numbers, Circle group, U(1) (the unit circle), simple Lie groups give the atomic "building blocks" that make up all (finite-dimensional) connected Lie groups via the operation of group extension. Many commonly encountered Lie groups are either simple or 'close' to being simple: for example, the so-called "special linear group" SL(''n'', \mathbb) of ''n'' by ''n'' matrices with determinant equal to 1 is simple for all odd ''n'' > 1, when it is isomorphic to the projective special linear group. The first classification of simple Lie groups was by Wilhelm Killing, and this work was la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Modular Form
In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the ''m''-fold product of upper half-planes \mathcal satisfying a certain kind of functional equation. Definition Let ''F'' be a totally real number field of degree ''m'' over the rational field. Let \sigma_1, \ldots, \sigma_m be the real embeddings of ''F''. Through them we have a map :GL_2(F) \to GL_2(\R)^m. Let \mathcal O_F be the ring of integers of ''F''. The group GL_2^+(\mathcal O_F) is called the ''full Hilbert modular group''. For every element z = (z_1, \ldots, z_m) \in \mathcal^m, there is a group action of GL_2^+ (\mathcal O_F) defined by \gamma \cdot z = (\sigma_1(\gamma) z_1, \ldots, \sigma_m(\gamma) z_m) For :g = \begina & b \\ c & d \end \in GL_2(\R), define: :j(g, z) = \det(g)^ (cz+d) A Hilbert modular form of weight (k_1,\ldots,k_m) is an analytic function on \mathcal^m such that for every \gamma \in GL ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Levi Decomposition
In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by , states that any finite-dimensional Lie algebra ''g'' over a field of characteristic zero is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra. The Levi decomposition implies that any finite-dimensional Lie algebra is a semidirect product of a solvable Lie algebra and a semisimple Lie algebra. When viewed as a factor-algebra of ''g'', this semisimple Lie algebra is also called the Levi factor of ''g''. To a certain extent, the decomposition can be used to reduce problems about finite-dimensional Lie algebras and Lie groups to separate problems about Lie algebras in these two special classes, solvable and semisimple. Moreover, Malcev (1942) showed that any two Levi subalgebras are conjugate by an (inner) automorphism ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup of invertible upper triangular matrices is a Borel subgroup. For groups realized over algebraically closed fields, there is a single conjugacy class of Borel subgroups. Borel subgroups are one of the two key ingredients in understanding the structure of simple (more generally, reductive) algebraic groups, in Jacques Tits' theory of groups with a (''B'', ''N'') pair. Here the group ''B'' is a Borel subgroup and ''N'' is the normalizer of a maximal torus contained in ''B''. The notion was introduced by Armand Borel, who played a leading role in the development of the theory of algebraic groups. Parabolic subgroups Subgroups between a Borel subgroup ''B'' and the ambient group ''G'' are called parabolic subgroups. Parabolic subgr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Eisenstein Series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms. Eisenstein series for the modular group Let be a complex number with strictly positive imaginary part. Define the holomorphic Eisenstein series of weight , where is an integer, by the following series: :G_(\tau) = \sum_ \frac. This series absolutely converges to a holomorphic function of in the upper half-plane and its Fourier expansion given below shows that it extends to a holomorphic function at . It is a remarkable fact that the Eisenstein series is a modular form. Indeed, the key property is its -covariance. Explicitly if and then :G_ \left( \frac \right) = (c\tau +d)^ G_(\tau) Note that is necessary such that the series converges absolutely, whereas needs to be even otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (functional Analysis)
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number \lambda is said to be in the spectrum of a bounded linear operator T if T-\lambda I * either has ''no'' set-theoretic inverse; * or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, I is the identity operator. By the closed graph theorem, \lambda is in the spectrum if and only if the bounded operator T - \lambda I: V\to V is non-bijective on V. The study of spectra and related properties is known as ''spectral theory'', which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional elements in its s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectral Theory
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operator (mathematics), operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of System of linear equations, systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter. Mathematical background The name ''spectral theory'' was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on Principal axis theorem, principal axes of an ellipsoid, in an infinite-dimensional setting. The later discovery in quantum mechanics t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Curves
In number theory and algebraic geometry, a modular curve ''Y''(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curves ''X''(Γ) which are compactifications obtained by adding finitely many points (called the cusps of Γ) to this quotient (via an action on the extended complex upper-half plane). The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Q(ζ''n''). The latter fact and its generaliza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Class Field Theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credited as one of pioneers of the notion of a class field. However, this notion was already familiar to Kronecker and it was actually Weber who coined the term before Hilbert's fundamental papers came out. The relevant ideas were developed in the period of several decades, giving rise to a set of conjectures by Hilbert that were subsequently proved by Takagi and Artin (with the help of Chebotarev's theorem). One of the major results is: given a number field ''F'', and writing ''K'' for the maximal abelian unramified extension of ''F'', the Galois group of ''K'' over ''F'' is canonically isomorphic to the ideal class group of ''F''. This statement was generalized to the so called Artin reciprocity law; in the idelic language, writing '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Group
In mathematics, a Lie group (pronounced ) is a group (mathematics), group that is also a differentiable manifold, such that group multiplication and taking inverses are both differentiable. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additional properties it must have to be thought of as a "transformation" in the abstract sense, for instance multiplication and the taking of inverses (to allow division), or equivalently, the concept of addition and subtraction. Combining these two ideas, one obtains a continuous group where multiplying points and their inverses is continuous. If the multiplication and taking of inverses are smoothness, smooth (differentiable) as well, one obtains a Lie group. Lie groups provide a natural model for the concept of continuous symmetry, a celebrated example of which is the circle group. Rotating a circle is an example of a continuous symmetry. For an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Semisimple Lie Algebra
In mathematics, a Lie algebra is semisimple if it is a direct sum of modules, direct sum of Simple Lie algebra, simple Lie algebras. (A simple Lie algebra is a non-abelian Lie algebra without any non-zero proper Lie algebra#Subalgebras.2C ideals and homomorphisms, ideals.) Throughout the article, unless otherwise stated, a Lie algebra is a finite-dimensional Lie algebra over a field of Characteristic (algebra), characteristic 0. For such a Lie algebra \mathfrak g, if nonzero, the following conditions are equivalent: *\mathfrak g is semisimple; *the Killing form \kappa(x, y) = \operatorname(\operatorname(x)\operatorname(y)) is non-degenerate; *\mathfrak g has no non-zero abelian ideals; *\mathfrak g has no non-zero solvable Lie algebra, solvable ideals; * the Radical of a Lie algebra, radical (maximal solvable ideal) of \mathfrak g is zero. Significance The significance of semisimplicity comes firstly from the Levi decomposition, which states that every finite dimensional Lie al ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]