Finite Rings
   HOME





Finite Rings
In mathematics, more specifically abstract algebra, a finite ring is a ring that has a finite number of elements. Every finite field is an example of a finite ring, and the additive part of every finite ring is an example of an abelian finite group, but the concept of finite rings in their own right has a more recent history. Although rings have more structure than groups do, the theory of finite rings is simpler than that of finite groups. For instance, the classification of finite simple groups was one of the major breakthroughs of 20th century mathematics, its proof spanning thousands of journal pages. On the other hand, it has been known since 1907 that any finite simple ring is isomorphic to the ring \mathrm_n(\mathbb_q) – the ''n''-by-''n'' matrices over a finite field of order ''q'' (as a consequence of Wedderburn's theorems, described below). The number of rings with ''m'' elements, for ''m'' a natural number, is listed under in the On-Line Encyclopedia of Integer Seq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Root Modulo N
In modular arithmetic, a number is a primitive root modulo  if every number coprime to is congruent to a power of modulo . That is, is a ''primitive root modulo''  if for every integer coprime to , there is some integer for which ≡ (mod ). Such a value is called the index or discrete logarithm of to the base modulo . So is a ''primitive root modulo''  if and only if is a generator of the multiplicative group of integers modulo . Gauss defined primitive roots in Article 57 of the '' Disquisitiones Arithmeticae'' (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime . In fact, the ''Disquisitiones'' contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive. A primitive root exists if and only if ''n'' is 1, 2, 4, ''p''''k'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rng (algebra)
In mathematics, and more specifically in abstract algebra, a rng (or non-unital ring or pseudo-ring) is an algebraic structure satisfying the same properties as a ring (mathematics), ring, but without assuming the existence of a multiplicative identity. The term ''rng'', pronounced like ''rung'' (IPA: ), is meant to suggest that it is a ring without ''i'', that is, without the requirement for an identity element. There is no consensus in the community as to whether the existence of a multiplicative identity must be one of the ring axioms (see '). The term ''rng'' was coined to alleviate this ambiguity when people want to refer explicitly to a ring without the axiom of multiplicative identity. A number of algebras of functions considered in Mathematical analysis, analysis are not unital, for instance the algebra of functions decreasing to zero at infinity, especially those with compact support on some (non-compact space, compact) space. Rngs appear in the following chain of subcl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




David Singmaster
David Breyer Singmaster (14 December 1938 – 13 February 2023) was an American-British mathematician who was emeritus professor of mathematics at London South Bank University, England. He had a huge personal collection of mechanical puzzles and books of brain teasers. He was most famous for being an early adopter and enthusiastic promoter of the Rubik's Cube. His ''Notes on Rubik's "Magic Cube"'' which he began compiling in 1979 provided the first mathematical analysis of the Cube as well as providing one of the first published solutions. The book contained his cube notation which allowed the recording of Rubik's Cube moves, and which quickly became the standard. Singmaster was both a puzzle historian and a composer of puzzles, and many of his puzzles were published in newspapers and magazines. In combinatorial number theory, Singmaster's conjecture states that there is an upper bound on the number of times a number other than 1 can appear in Pascal's triangle. Career Davi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph Wedderburn
Joseph Henry Maclagan Wedderburn FRSE FRS (2 February 1882 – 9 October 1948) was a Scottish mathematician, who taught at Princeton University for most of his career. A significant algebraist, he proved that a finite division algebra is a field ( Wedderburn's little theorem), and part of the Artin–Wedderburn theorem on simple algebras. He also worked on group theory and matrix algebra. His younger brother was the lawyer Ernest Wedderburn. Life Joseph Wedderburn was the tenth of fourteen children of Alexander Wedderburn of Pearsie, a physician, and Anne Ogilvie. He was educated at Forfar Academy then in 1895 his parents sent Joseph and his younger brother Ernest to live in Edinburgh with their paternal uncle, J. R. Maclagan Wedderburn, allowing them to attend George Watson's College. This house was at 3 Glencairn Crescent in the West End of the city. In 1898 Joseph entered the University of Edinburgh. In 1903, he published his first three papers, worked as an assistant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nathan Jacobson
Nathan Jacobson (October 5, 1910 – December 5, 1999) was an American mathematician. Biography Born Nachman Arbiser in Warsaw, Jacobson emigrated to America with his family in 1918. He graduated from the University of Alabama in 1930 and was awarded a doctorate in mathematics from Princeton University in 1934. While working on his thesis, ''Non-commutative polynomials and cyclic algebras'', he was advised by Joseph Wedderburn. Jacobson taught and researched at Bryn Mawr College (1935–1936), the University of Chicago (1936–1937), the University of North Carolina at Chapel Hill (1937–1943), and Johns Hopkins University (1943–1947) before joining Yale University in 1947. He remained at Yale until his retirement. He was a member of the National Academy of Sciences and the American Academy of Arts and Sciences. He served as president of the American Mathematical Society from 1971 to 1973, and was awarded their highest honour, the Leroy P. Steele prize for lifetime achievemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Division Ring
In algebra, a division ring, also called a skew field (or, occasionally, a sfield), is a nontrivial ring in which division by nonzero elements is defined. Specifically, it is a nontrivial ring in which every nonzero element has a multiplicative inverse, that is, an element usually denoted , such that . So, (right) ''division'' may be defined as , but this notation is avoided, as one may have . A commutative division ring is a field. Wedderburn's little theorem asserts that all finite division rings are commutative and therefore finite fields. Historically, division rings were sometimes referred to as fields, while fields were called "commutative fields". In some languages, such as French, the word equivalent to "field" ("corps") is used for both commutative and noncommutative cases, and the distinction between the two cases is made by adding qualificatives such as "corps commutatif" (commutative field) or "corps gauche" (skew field). All division rings are simple. That is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Wedderburn's Little Theorem
In mathematics, Wedderburn's little theorem states that every finite division ring is a field; thus, every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Artin–Zorn theorem generalizes the theorem to alternative rings: every finite alternative division ring is a field. History The original proof was given by Joseph Wedderburn in 1905,Lam (2001), p. 204/ref> who went on to prove the theorem in two other ways. Another proof was given by Leonard Eugene Dickson shortly after Wedderburn's original proof, and Dickson acknowledged Wedderburn's priority. However, as noted in , Wedderburn's first proof was incorrect – it had a gap – and his subsequent proofs appeared only after he had read Dickson's correct proof. On this basis, Parshall argues that Dickson should be credited with the first correct proof. A simplified version of the proof was later given by Ernst Witt. Witt's proof is sket ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Group
In mathematics and group theory, the term multiplicative group refers to one of the following concepts: *the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field ''F'', the group is , where 0 refers to the zero element of ''F'' and the binary operation • is the field multiplication, *the algebraic torus GL(1). Examples *The multiplicative group of integers modulo ''n'' is the group under multiplication of the invertible elements of \mathbb/n\mathbb. When ''n'' is not prime, there are elements other than zero that are not invertible. * The multiplicative group of positive real numbers \mathbb^+ is an abelian group with 1 its identity element. The logarithm is a group isomorphism of this group to the additive group of real numbers, \mathbb. * The multiplicative group of a field F is the set of all nonzero elements: F^\times = F -\, under the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Linear Group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associated projective space P(''V''). Explicitly, the projective linear group is the quotient group : PGL(''V'') = GL(''V'')/Z(''V'') where GL(''V'') is the general linear group of ''V'' and Z(''V'') is the subgroup of all nonzero scalar transformations of ''V''; these are quotiented out because they act trivially on the projective space and they form the kernel of the action, and the notation "Z" reflects that the scalar transformations form the center of the general linear group. The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: : PSL(''V'') = SL(''V'')/SZ(''V'') where SL(''V'') is the special linear group over ''V'' and SZ('' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]