HOME





Digital Topology
Digital topology deals with properties and features of two-dimensional (2D) or three-dimensional (3D) digital images that correspond to topological properties (e.g., connectedness) or topological features (e.g., boundaries) of objects. Concepts and results of digital topology are used to specify and justify important (low-level) image analysis algorithms, including algorithms for thinning, border or surface tracing, counting of components or tunnels, or region-filling. History Digital topology was first studied in the late 1960s by the computer image analysis researcher Azriel Rosenfeld (1931–2004), whose publications on the subject played a major role in establishing and developing the field. The term "digital topology" was itself invented by Rosenfeld, who used it in a 1973 publication for the first time. A related work called the grid cell topology, which could be considered as a link to classic combinatorial topology, appeared in the book of Pavel Alexandrov and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Two-dimensional
A two-dimensional space is a mathematical space with two dimensions, meaning points have two degrees of freedom: their locations can be locally described with two coordinates or they can move in two independent directions. Common two-dimensional spaces are often called '' planes'', or, more generally, '' surfaces''. These include analogs to physical spaces, like flat planes, and curved surfaces like spheres, cylinders, and cones, which can be infinite or finite. Some two-dimensional mathematical spaces are not used to represent physical positions, like an affine plane or complex plane. Flat The most basic example is the flat Euclidean plane, an idealization of a flat surface in physical space such as a sheet of paper or a chalkboard. On the Euclidean plane, any two points can be joined by a unique straight line along which the distance can be measured. The space is flat because any two lines transversed by a third line perpendicular to both of them are parallel, meaning th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abstract Cell Complexes
Abstract may refer to: *"Abstract", a 2017 episode of the animated television series '' Adventure Time'' * ''Abstract'' (album), 1962 album by Joe Harriott * Abstract algebra, sets with specific operations acting on their elements * Abstract of title, a summary of the documents affecting the title to a parcel of land * Abstract (law), a summary of a legal document * Abstract (summary), in academic publishing * Abstract art, artistic works that do not attempt to represent reality or concrete subjects * '' Abstract: The Art of Design'', 2017 Netflix documentary series * Abstract music, music that is non-representational * Abstract object in philosophy * Abstract structure in mathematics * Abstract type in computer science * The property of an abstraction * Q-Tip (musician), also known as "The Abstract" * Abstract and concrete In philosophy and the arts, a fundamental distinction exists between abstract and concrete entities. While there is no universally accepted definition, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Geometry
Digital geometry deals with discrete sets (usually discrete point sets) considered to be digitized models or images of objects of the 2D or 3D Euclidean space. Simply put, ''digitizing'' is replacing an object by a discrete set of its points. The images we see on the TV screen, the raster display of a computer, or in newspapers are in fact digital images. Its main application areas are computer graphics and image analysis. Main aspects of study are: * Constructing digitized representations of objects, with the emphasis on precision and efficiency (either by means of synthesis, see, for example, Bresenham's line algorithm or digital disks, or by means of digitization and subsequent processing of digital images). * Study of properties of digital sets; see, for example, Pick's theorem, digital convexity, digital straightness, or digital planarity. * Transforming digitized representations of objects, for example (A) into simplified shapes such as (i) skeletons, by repeated rem ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Euler Characteristic
In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by \chi (Greek alphabet, Greek lower-case letter chi (letter), chi). The Euler characteristic was originally defined for polyhedron, polyhedra and used to prove various theorems about them, including the classification of the Platonic solids. It was stated for Platonic solids in 1537 in an unpublished manuscript by Francesco Maurolico. Leonhard Euler, for whom the concept is named, introduced it for convex polyhedra more generally but failed to rigorously prove that it is an invariant. In modern mathematics, the Euler characteristic arises from homology (mathematics), homology and, more abstractly, homological algebra. Polyhedra The Euler characteristic was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a Neighbourhood (mathematics), neighborhood that is homeomorphic to an open (topology), open subset of n-dimensional Euclidean space. One-dimensional manifolds include Line (geometry), lines and circles, but not Lemniscate, self-crossing curves such as a figure 8. Two-dimensional manifolds are also called Surface (topology), surfaces. Examples include the Plane (geometry), plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauss–Bonnet Theorem
In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a Surface (topology), surface to its underlying topology. In the simplest application, the case of a triangle Euclidean geometry, on a plane, the Sum of angles of a triangle, sum of its angles is 180 degrees. The Gauss–Bonnet theorem extends this to more complicated shapes and curved surfaces, connecting the local and global geometries. The theorem is named after Carl Friedrich Gauss, who developed a version but never published it, and Pierre Ossian Bonnet, who published a special case in 1848. Statement Suppose is a Compact space, compact two-dimensional Riemannian manifold with boundary . Let be the Gaussian curvature of , and let be the geodesic curvature of . Then :\int_M K\,dA+\int_k_g\,ds=2\pi\chi(M), \, where is the volume element, element of area of the surface, and is the line element along the bound ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplicial Complexes
In mathematics, a simplicial complex is a structured set composed of points, line segments, triangles, and their ''n''-dimensional counterparts, called simplices, such that all the faces and intersections of the elements are also included in the set (see illustration). Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex., Section 4.3 Definitions A simplicial complex \mathcal is a set of simplices that satisfies the following conditions: # Every face of a simplex from \mathcal is also in \mathcal. # The non-empty intersection of any two simplices \sigma_1, \sigma_2 \in \mathcal is a face of both \sigma_1 and \sigma_2. See also the definition of an abstract ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Piecewise Linear Manifold
In mathematics, a piecewise linear manifold (PL manifold) is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas, such that one can pass from chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a triangulation. An isomorphism of PL manifolds is called a PL homeomorphism. Relation to other categories of manifolds PL, or more precisely PDIFF, sits between DIFF (the category of smooth manifolds) and TOP (the category of topological manifolds): it is categorically "better behaved" than DIFF — for example, the Generalized Poincaré conjecture is true in PL (with the possible exception of dimension 4, where it is equivalent to DIFF), but is false generally in DIFF — but is "worse behaved" than TOP, as elaborated in surgery theory. Smooth manifolds Smooth manifolds have canonical PL structures — they are uniquely ''triangulizable,'' by Whitehead's t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cell Complex
In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called ''cells'') of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. (open access) CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex). The C in CW stands for "closure-finite", and the W for "weak" topology. Definition CW complex A CW complex is constructed by taking the union of a sequence of topological spaces \emptyset = X_ \subset X_0 \subset X_1 \subset \cdots such that each X_k is obtained from X_ by gluing copies of k-cells (e^k_\alpha)_\alpha, each homeomorphic to the open k- ball ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pixels
In digital imaging, a pixel (abbreviated px), pel, or picture element is the smallest addressable element in a raster image, or the smallest addressable element in a dot matrix display device. In most digital display devices, pixels are the smallest element that can be manipulated through software. Each pixel is a sample of an original image; more samples typically provide more accurate representations of the original. The intensity of each pixel is variable. In color imaging systems, a color is typically represented by three or four component intensities such as red, green, and blue, or cyan, magenta, yellow, and black. In some contexts (such as descriptions of camera sensors), ''pixel'' refers to a single scalar element of a multi-component representation (called a ''photosite'' in the camera sensor context, although ''sensel'' is sometimes used), while in yet other contexts (like MRI) it may refer to a set of component intensities for a spatial position. Software on ear ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pixel Connectivity
In image processing, pixel connectivity is the way in which pixels in 2-dimensional (or hypervoxels in n-dimensional) images relate to their neighbors. Formulation In order to specify a set of connectivities, the dimension and the width of the neighborhood , must be specified. The dimension of a neighborhood is valid for any dimension n\geq1. A common width is 3, which means along each dimension, the central cell will be adjacent to 1 cell on either side for all dimensions. Let M_N^n represent a N-dimensional hypercubic neighborhood with size on each dimension of n=2k+1, k\in\mathbb Let \vec represent a discrete vector in the first orthant from the center structuring element to a point on the boundary of M_N^n. This implies that each element q_i \in \ ,\forall i \in \ and that at least one component q_i = k Let S_N^d represent a N-dimensional hypersphere with radius of d=\left \Vert \vec \right \Vert. Define the amount of elements on the hypersphere S_N^d within the nei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Digital Manifold
In mathematics, a digital manifold is a special kind of combinatorial manifold which is defined in digital space i.e. grid cell space. A combinatorial manifold is a kind of manifold which is a discretization of a manifold. It usually means a piecewise linear manifold made by simplicial complexes. Concepts Parallel-move is used to extend an i-cell to (i+1)-cell. In other words, if A and B are two i-cells and A is a parallel-move of B, then is an (i+1)-cell. Therefore, k-cells can be defined recursively. Basically, a connected set of grid points M can be viewed as a digital k-manifold if: (1) any two k-cells are (k-1)-connected, (2) every (k-1)-cell has only one or two parallel-moves, and (3) M does not contain any (k+1)-cells. See also *Digital geometry * Digital topology * Topological data analysis *Topology *Discrete mathematics Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]