Computing The Permanent
In linear algebra, the computation of the permanent of a matrix is a problem that is thought to be more difficult than the computation of the determinant of a matrix despite the apparent similarity of the definitions. The permanent is defined similarly to the determinant, as a sum of products of sets of matrix entries that lie in distinct rows and columns. However, where the determinant weights each of these products with a ±1 sign based on the parity of the set, the permanent weights them all with a +1 sign. While the determinant can be computed in polynomial time by Gaussian elimination, it is generally believed that the permanent cannot be computed in polynomial time. In computational complexity theory, a theorem of Valiant states that computing permanents is #P-hard, and even #P-complete for matrices in which all entries are 0 or 1 . This puts the computation of the permanent in a class of problems believed to be even more difficult to compute than NP. It is known that c ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Tensor
In mathematics, a symmetric tensor is an unmixed tensor that is invariant under a permutation of its vector arguments: :T(v_1,v_2,\ldots,v_r) = T(v_,v_,\ldots,v_) for every permutation ''σ'' of the symbols Alternatively, a symmetric tensor of order ''r'' represented in coordinates as a quantity with ''r'' indices satisfies :T_ = T_. The space of symmetric tensors of order ''r'' on a finite-dimensional vector space ''V'' is naturally isomorphic to the dual of the space of homogeneous polynomials of degree ''r'' on ''V''. Over fields of characteristic zero, the graded vector space of all symmetric tensors can be naturally identified with the symmetric algebra on ''V''. A related concept is that of the antisymmetric tensor or alternating form. Symmetric tensors occur widely in engineering, physics and mathematics. Definition Let ''V'' be a vector space and :T\in V^ a tensor of order ''k''. Then ''T'' is a symmetric tensor if :\tau_\sigma T = T\, for the braiding ma ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pfaffian Orientation
In graph theory, a Pfaffian orientation of an undirected graph assigns a direction to each edge, so that certain cycles (the "even central cycles") have an odd number of edges in each direction. When a graph has a Pfaffian orientation, the orientation can be used to count the perfect matchings of the graph. This is the main idea behind the FKT algorithm for counting perfect matchings in planar graphs, which always have Pfaffian orientations. More generally, every graph that does not have the utility graph K_ as a graph minor has a Pfaffian orientation, but K_ does not, nor do infinitely many other minimal non-Pfaffian graphs. Definitions A Pfaffian orientation of an undirected graph is an orientation in which every even central cycle is oddly oriented. The terms of this definition have the following meanings: *An orientation is an assignment of a direction to each edge of the graph. *A cycle C is even if it contains an even number of edges. *A cycle C is central if the subgraph of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
George Pólya
George Pólya (; ; December 13, 1887 – September 7, 1985) was a Hungarian-American mathematician. He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University. He made fundamental contributions to combinatorics, number theory, numerical analysis and probability theory. He is also noted for his work in heuristics and mathematics education. He has been described as one of The Martians (scientists), The Martians, an informal category which included one of his most famous students at ETH Zurich, John von Neumann. Life and works Pólya was born in Budapest, Austria-Hungary, to Anna Deutsch and Jakab Pólya, History of the Jews in Hungary, Hungarian Jews who had converted to Christianity in 1886. Although his parents were religious and he was baptized into the Catholic Church upon birth, George eventually grew up to be an agnostic. He received a PhD under Lipót Fejér in 1912, at Eötvös Loránd University. He was a professor o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Bipartite Graph
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set..Electronic edition page 17. Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg. However, drawings of complete bipartite graphs were already printed as early as 1669, in connection with an edition of the works of Ramon Llull edited by Athanasius Kircher. Llull himself had made similar drawings of complete graphs three centuries earlier.. Definition A complete bipartite graph is a graph whose vertices can be partitioned into two subsets and such that no edge has both endpoints in the same subset, and every possible edge that could connect vertices in different subsets is part of the graph. That is, it is a bipartite graph such that for every two vertices and, is an edge in . A complete bipartite graph w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism (graph Theory)
In graph theory, two graph (discrete mathematics), graphs G and G' are homeomorphic if there is a graph isomorphism from some #Subdivision_and_smoothing, subdivision of G to some subdivision of G'. If the edges of a graph are thought of as lines drawn from one vertex (graph theory), vertex to another (as they are usually depicted in diagrams), then two graphs are homeomorphic to each other in the graph-theoretic sense precisely if their diagrams are homeomorphism, homeomorphic in the topology, topological sense. Subdivision and smoothing In general, a subdivision of a graph ''G'' (sometimes known as an expansion) is a graph resulting from the subdivision of edges in ''G''. The subdivision of some edge ''e'' with endpoints yields a graph containing one new vertex ''w'', and with an edge set replacing ''e'' by two new edges, and . For directed edges, this operation shall preserve their propagating direction. For example, the edge ''e'', with endpoints : can be subdivided int ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Root
In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4^2 = (-4)^2 = 16. Every nonnegative real number has a unique nonnegative square root, called the ''principal square root'' or simply ''the square root'' (with a definite article, see below), which is denoted by \sqrt, where the symbol "\sqrt" is called the '' radical sign'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case, 9. For non-negative , the principal square root can also be written in exponent notation, as x^. Every positive number has two square roots: \sqrt (which is positive) and -\sqrt (which i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Skew-symmetric Matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if a_ denotes the entry in the i-th row and j-th column, then the skew-symmetric condition is equivalent to Example The matrix A = \begin 0 & 2 & -45 \\ -2 & 0 & -4 \\ 45 & 4 & 0 \end is skew-symmetric because A^\textsf = \begin 0 & -2 & 45 \\ 2 & 0 & 4 \\ -45 & -4 & 0 \end = -A . Properties Throughout, we assume that all matrix entries belong to a field \mathbb whose characteristic is not equal to 2. That is, we assume that , where 1 denotes the multiplicative identity and 0 the additive identity of the given field. If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. * The sum of two skew-symmetric matrices is skew-symmetric. * A scalar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pfaffian
In mathematics, the determinant of an ''m''-by-''m'' skew-symmetric matrix can always be written as the square of a polynomial in the matrix entries, a polynomial with integer coefficients that only depends on ''m''. When ''m'' is odd, the polynomial is zero, and when ''m'' is even, it is a nonzero polynomial of degree ''m''/2, and is unique up to multiplication by ±1. The convention on skew-symmetric tridiagonal matrices, given below in the examples, then determines one specific polynomial, called the Pfaffian polynomial. The value of this polynomial, when applied to the entries of a skew-symmetric matrix, is called the Pfaffian of that matrix. The term Pfaffian was introduced by , who indirectly named them after Johann Friedrich Pfaff. Explicitly, for a skew-symmetric matrix A, : \operatorname(A)^2=\det(A), which was first proved by , who cites Jacobi for introducing these polynomials in work on Pfaffian systems of differential equations. Cayley obtains this relation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tutte Matrix
In graph theory, the Tutte matrix ''A'' of a graph ''G'' = (''V'', ''E'') is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = \ then the Tutte matrix is an ''n''-by-''n'' matrix ''A'' with entries : A_ = \begin x_\;\;\mbox\;(i,j) \in E \mbox ij\\ 0\;\;\;\;\mbox \end where the ''x''''ij'' are indeterminates. The determinant of this skew-symmetric matrix is then a polynomial (in the variables ''xij'', ''i < j'' ): this coincides with the square of the pfaffian of the matrix ''A'' and is non-zero (as a polynomial) a perfect matching exists. (This polynomial is not the [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
FKT Algorithm
The Fisher–Kasteleyn–Temperley (FKT) algorithm, named after Michael Fisher, Pieter Kasteleyn, and Harold Neville Vazeille Temperley, Neville Temperley, counts the number of perfect matchings in a planar graph, planar graph in polynomial time. This same task is Sharp-P-complete, #P-complete for general graphs. For Matching (graph theory), matchings that are not required to be perfect, counting them remains #P-complete even for planar graphs. The key idea of the FKT algorithm is to convert the problem into a Pfaffian computation of a skew-symmetric matrix derived from a planar embedding of the graph. The Pfaffian of this matrix is then computed efficiently using standard Determinant#Algorithmic implementation, determinant algorithms. History The problem of counting planar perfect matchings has its roots in statistical mechanics and chemistry, where the original question was: If diatomic molecules are adsorbed on a surface, forming a single layer, how many ways can they be arrange ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Planar Graph
In graph theory, a planar graph is a graph (discrete mathematics), graph that can be graph embedding, embedded in the plane (geometry), plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph, or a planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with addit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |