Computability Theory (computation)
Computability theory, also known as recursion theory, is a branch of mathematical logic, computer science, and the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees. The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and effective descriptive set theory. Basic questions addressed by computability theory include: * What does it mean for a function on the natural numbers to be computable? * How can noncomputable functions be classified into a hierarchy based on their level of noncomputability? Although there is considerable overlap in terms of knowledge and methods, mathematical computability theorists study the theory of relative computability, reducibility notions, and degree structures; those in the computer science field focus on the theory of subrecursive hierarchies, formal methods, and formal languages. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rózsa Péter
Rózsa Péter, until January 1934 Rózsa Politzer, (17 February 1905 – 16 February 1977) was a Hungarian mathematician and logician. She is best known as the "founding mother of recursion theory". Early life and education Péter was born in Budapest, Hungary, as Rózsa Politzer (Hungarian: Politzer Rózsa). She attended Pázmány Péter University (now Eötvös Loránd University), originally studying chemistry but later switching to mathematics. She attended lectures by Lipót Fejér and József Kürschák. While at university, she met László Kalmár; they would collaborate in future years and Kalmár encouraged her to pursue her love of mathematics. After graduating in 1927, Politzer could not find a permanent teaching position although she had passed her exams to qualify as a mathematics teacher. Due to the effects of the Great Depression, many university graduates could not find work and she began private tutoring. At this time, she also began her graduate stud ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Word Problem For Semigroups
A word is a basic element of language that carries meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguists on its definition and numerous attempts to find specific criteria of the concept remain controversial. Different standards have been proposed, depending on the theoretical background and descriptive context; these do not converge on a single definition. Some specific definitions of the term "word" are employed to convey its different meanings at different levels of description, for example based on phonological, grammatical or orthographic basis. Others suggest that the concept is simply a convention used in everyday situations. The concept of "word" is distinguished from that of a morpheme, which is the smallest unit of language that has a meaning, even if it cannot stand on its own. Words are made out of at least one morpheme. Morphemes can ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Andrey Markov Jr
Andrey (Андрей) is a masculine given name predominantly used in Slavic languages, including Belarusian, Bulgarian, and Russian. The name is derived from the ancient Greek Andreas (Ἀνδρέας), meaning "man" or "warrior". In Eastern Orthodox Christianity, Andrey holds religious significance, particularly due to Saint Andrew, the patron saint of several countries, whose legacy has contributed to the name’s popularity across Orthodox nations. In Spanish-speaking countries, Andrey can be interpreted as a portmanteau of the name Andrés and '' Rey'', the Spanish word for ''king''. People with the given name * Andrey (footballer, born 1983), Andrey Nazário Afonso, goalkeeper for Avenida * Andrey (footballer, born 1993), Andrey da Silva Ventura, goalkeeper for Sampaio Corrêa * Andrey (footballer, born 1996), Andrey Falinski Rodrigues, midfielder for Betim Futebol * Andrey (footballer, born February 1998), Andrey Ramos do Nascimento, midfielder for Coritiba * Andr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Undecidable Problems
In computability theory, an undecidable problem is a decision problem for which an effective method (algorithm) to derive the correct answer does not exist. More formally, an undecidable problem is a problem whose language is not a recursive set; see the article Decidable language. There are uncountably many undecidable problems, so the list below is necessarily incomplete. Though undecidable languages are not recursive languages, they may be subsets of Turing recognizable languages: i.e., such undecidable languages may be recursively enumerable. Many, if not most, undecidable problems in mathematics can be posed as word problems: determining when two distinct strings of symbols (encoding some mathematical concept or object) represent the same object or not. For undecidability in axiomatic mathematics, see List of statements undecidable in ZFC. Problems about abstract machines * The halting problem (determining whether a Turing machine halts on a given input) and the morta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Entscheidungsproblem
In mathematics and computer science, the ; ) is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. It asks for an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid, i.e., valid in every Structure (mathematical logic), structure. Such an algorithm was proven to be impossible by Alonzo Church and Alan Turing in 1936. Completeness theorem By Gödel's completeness theorem, the completeness theorem of first-order logic, a statement is universally valid if and only if it can be deduced using logical rules and axioms, so the ' can also be viewed as asking for an algorithm to decide whether a given statement is provable using the rules of logic. In 1936, Alonzo Church and Alan Turing published independent papers showing that a general solution to the ' is impossible, assuming that the intuitive notion of "effectively calculable" is captured by the functions computable by a Turing machine (or equivalently, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursive Set
In computability theory, a set of natural numbers is computable (or decidable or recursive) if there is an algorithm that computes the membership of every natural number in a finite number of steps. A set is noncomputable (or undecidable) if it is not computable. Definition A subset S of the natural numbers is computable if there exists a total computable function f such that: :f(x)=1 if x\in S :f(x)=0 if x\notin S. In other words, the set S is computable if and only if the indicator function \mathbb_ is computable. Examples *Every recursive language is a computable. *Every finite or cofinite subset of the natural numbers is computable. **The empty set is computable. **The entire set of natural numbers is computable. **Every natural number is computable. *The subset of prime numbers is computable. *The set of Gödel numbers is computable. Non-examples *The set of Turing machines that halt is not computable. *The set of pairs of homeomorphic finite simplicial complexes is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Alfred Tarski
Alfred Tarski (; ; born Alfred Teitelbaum;School of Mathematics and Statistics, University of St Andrews ''School of Mathematics and Statistics, University of St Andrews''. January 14, 1901 – October 26, 1983) was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, type theory, and analytic philosophy. Educated in Poland at the University of Warsaw, and a member of the Lwów–Warsaw school, Lwów–Warsaw school of logic and the Warsaw school of mathematics, he immigrated to the United States in 1939 where he became a naturalized citizen in 1945. Tarski taught and carried out research in mathematics at the University of California, Berkeley, from 1942 until his death in 1983.#FefA, Feferman A. His biographers Anita Burdman Feferman and Solomon Feferman state that, "Along with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Church–Turing Thesis
In Computability theory (computation), computability theory, the Church–Turing thesis (also known as computability thesis, the Turing–Church thesis, the Church–Turing conjecture, Church's thesis, Church's conjecture, and Turing's thesis) is a wiktionary:thesis, thesis about the nature of computable functions. It states that a function (mathematics), function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine. The thesis is named after American mathematician Alonzo Church and the British mathematician Alan Turing. Before the precise definition of computable function, mathematicians often used the informal term ''effectively calculable'' to describe functions that are computable by paper-and-pencil methods. In the 1930s, several independent attempts were made to formal system, formalize the notion of computability: * In 1933, Kurt Gödel, with Jacques Herbrand, formalized the definition of the class of general ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin Davis (mathematician)
Martin David Davis (March 8, 1928 – January 1, 2023) was an American mathematician and computer scientist who contributed to the fields of computability theory and mathematical logic. His work on Hilbert's tenth problem led to the MRDP theorem. He also advanced the Post–Turing model and co-developed the Davis–Putnam–Logemann–Loveland (DPLL) algorithm, which is foundational for Boolean satisfiability solvers. Davis won the Leroy P. Steele Prize, the Chauvenet Prize (with Reuben Hersh), and the Lester R. Ford Award. He was a fellow of the American Academy of Arts and Sciences and a fellow of the American Mathematical Society. Early life and education Davis's parents were Jewish immigrants to the United States from Łódź, Poland, and married after they met again in New York City. Davis was born in New York City on March 8, 1928. He grew up in the Bronx, where his parents encouraged him to obtain a full education.. He graduated from the prestigious Bronx High ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |