Compact Linear Accelerator For Research And Applications
The Compact Linear Accelerator for Research and Applications (CLARA) is a scientific user facility at Daresbury Laboratory. It is an electron linear accelerator (linac) currently under construction in the Electron Hall. CLARA is made up of three phases; Phase 1 is operational and has achieved energies of 50 MeV with bunch charges >250 pC. Phase 2 was constructed off-line and consists of three linacs delivering a total design energy of up to 250 MeV, 250 pC beam charge at 100 Hz repetition rate. On 2 April 2025, CLARA achieved the full design energy of 250 MeV through Phase 2, at a bunch charge of 60 pC. Phase 2 also consists of the Full Energy Beam Exploitation (FEBE) arc, a beamline which looks at plasma-wakefield acceleration, boosting the beam to energies of around 2 GeV for high energy experimentation. Phase 3 is future expansion for X-ray Free Electron Laser (X-FEL) construction. This 100 nm X-FEL is linked to the UK XFEL project. History After beginning i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Particle Accelerator
A linear particle accelerator (often shortened to linac) is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of Oscillation, oscillating electric potentials along a Line (geometry), linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles (electrons and positrons) for particle physics. The design of a linac depends on the type of particle that is being accelerated: electrons, protons or ions. Linacs range in size from a cathode-ray tube (which is a type of linac) to the linac at the SLAC National Accele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow and the optical amplifier patented by Gordon Gould. A laser differs from other sources of light in that it emits light that is coherence (physics), ''coherent''. Spatial coherence allows a laser to be focused to a tight spot, enabling uses such as optical communication, laser cutting, and Photolithography#Light sources, lithography. It also allows a laser beam to stay narrow over great distances (collimated light, collimation), used in laser pointers, lidar, and free-space optical communication. Lasers can also have high temporal coherence, which permits them to emit light ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Physics Facilities
In the Outline of physical science, physical sciences, a particle (or corpuscle in older texts) is a small wikt:local, localized physical body, object which can be described by several physical property, physical or chemical property, chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from subatomic particles like the electron, to microscopic scale, microscopic particles like atoms and molecules, to macroscopic scale, macroscopic particles like powder (substance), powders and other granular materials. Particles can also be used to create scientific models of even larger objects depending on their density, such as humans moving in a crowd or celestial bodies in motion (physics), motion. The term ''particle'' is rather general in meaning, and is refined as needed by various scientific fields. Anything that is composed of particles may be referred to as being particulate. However, the noun ''particulates, particulate'' is most frequently u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Accelerators
A particle accelerator is a machine that uses electromagnetic fields to propel electric charge, charged particles to very high speeds and energies to contain them in well-defined particle beam, beams. Small accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncology, oncological purposes, Isotopes in medicine, radioisotope production for medical diagnostics, Ion implantation, ion implanters for the manufacturing of Semiconductor, semiconductors, and Accelerator mass spectrometry, accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon. Large accelerators include the Relativistic Heavy Ion Collider at Brookhaven National Laboratory in New York, and the largest accelerator, the Large Hadron Collider near Geneva, Switzerland, operated b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Full Width At Half Maximum
In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value. In other words, it is the width of a spectrum curve measured between those points on the ''y''-axis which are half the maximum amplitude. Half width at half maximum (HWHM) is half of the FWHM if the function is symmetric. The term full duration at half maximum (FDHM) is preferred when the independent variable is time. FWHM is applied to such phenomena as the duration of pulse waveforms and the spectral width of sources used for optical communications and the resolution of spectrometers. The convention of "width" meaning "half maximum" is also widely used in signal processing to define bandwidth as "width of frequency range where less than half the signal's power is attenuated", i.e., the power is at least half the maximum. In signal processing terms, this is at most −3 dB of att ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mode Locking
Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked". Laser cavity modes Although laser light is perhaps the purest form of light, it is not of a single, pure frequency or wavelength. All lasers produce light over some natural bandwidth or range of frequencies. A laser's bandwidth of operation is determined primarily by the gain medium from which the laser is constructed, and the range of frequencies over which a lase ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Self-amplified Spontaneous Emission
Self-amplified spontaneous emission (SASE) is a process within a free-electron laser (FEL) by which a laser beam is created from a high-energy electron beam. The SASE process starts with an electron bunch being injected into an undulator, with a velocity close to the speed of light and a uniform density distribution within the bunch. In the undulator the electrons are wiggled and emit light characteristic of the undulator strength but within a certain energy bandwidth. The emitted photons travel slightly faster than the electrons and interact with them each undulator period. Depending on the relative phase between electrons and photons, electrons gain or lose energy (velocity), i.e. faster electrons catch up with slower ones. Thereby the electron bunch density is periodically modulated by the radiation which is called microbunching. The structured electron beam amplifies only certain photon energies at the cost of kinetic energy until the system goes into saturation. SASE energy ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harmonic Generation
Harmonic generation (HG, also called multiple harmonic generation) is a nonlinear optical process in which n photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with n times the energy of the initial photons (equivalently, n times the frequency and the wavelength divided by n). General process In a medium having a substantial nonlinear susceptibility, harmonic generation is possible. Note that for even orders (n = 2,4,\dots), the medium must have no center of symmetry (non-centrosymmetrical). Because the process requires that many photons are present at the same time and at the same place, the generation process has a low probability to occur, and this probability decreases with the order n. To generate efficiently, the symmetry of the medium must allow the signal to be amplified (through phase matching, for instance), and the light source must be intense and well-controlled spatially (with a collimated laser) and tempora ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Klystron
A klystron is a specialized linear-beam vacuum tube, invented in 1937 by American electrical engineers Russell and Sigurd Varian,Pond, Norman H. "The Tube Guys". Russ Cochran, 2008 p.31-40 which is used as an amplifier for high radio frequencies, from ultra high frequency, UHF up into the microwave range. Low-power klystrons are used as oscillators in terrestrial microwave relay communications links, while high-power klystrons are used as output tubes in UHF television transmitters, satellite communication, radar transmitters, and to generate the drive power for modern particle accelerators. In a klystron, an electron beam interacts with radio waves as it passes through cavity resonator, resonant cavities, metal boxes along the length of a tube. The electron beam first passes through a cavity to which the input signal is applied. The energy of the electron beam amplifies the signal, and the amplified signal is taken from a cavity at the other end of the tube. The output signal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Microwave Cavity
A microwave cavity or radio frequency cavity (RF cavity) is a special type of resonator, consisting of a closed (or largely closed) metal structure that confines electromagnetic fields in the microwave or radio frequency, RF region of the spectrum. The structure is either hollow or filled with dielectric material. The microwaves bounce back and forth between the walls of the cavity. At the cavity's resonant frequency, resonant frequencies they reinforce to form standing waves in the cavity. Therefore, the cavity functions similarly to an organ pipe or sound box in a musical instrument, oscillating preferentially at a series of frequencies, its resonant frequencies. Thus it can act as a bandpass filter, allowing microwaves of a particular frequency to pass while blocking microwaves at nearby frequencies. A microwave cavity acts similarly to a resonant circuit with extremely low loss at its frequency of operation, resulting in quality factors (Q factors) up to the order of 106, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Faraday Cup
A Faraday cup is a metal (conductive) cup designed to catch charged particles. The resulting current can be measured and used to determine the number of ions or electrons hitting the cup. The Faraday cup was named after Michael Faraday who first theorized ions around 1830. Examples of devices which use Faraday cups include space probes (Voyager 1, & 2, Parker Solar Probe, etc.) and mass spectrometers. Faraday cups can also be used to measure charged aerosol particles. Principle of operation When a beam or packet of ions or electrons (e.g. from an electron beam) hits the metallic body of the cup, the apparatus gains a small net charge. The cup can then be discharged to measure a small current proportional to the charge carried by the impinging ions or electrons. By measuring the electric current (the number of electrons flowing through the circuit per second) in the cup, the number of charges can be determined. For a continuous beam of ions (assumed to be singly charged) or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Storage Ring
A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating, typically for many hours. Storage of a particular particle depends upon the mass, momentum, and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons. Storage rings are most often used to store electrons that radiate synchrotron radiation. Over 50 facilities based on electron storage rings exist and are used for a variety of studies in chemistry and biology. Storage rings can also be used to produce polarized high-energy electron beams through the Sokolov-Ternov effect. The best-known application of storage rings is their use in particle accelerators and in particle colliders, where two counter-rotating beams of stored particles are brought into collision at discrete locations. The resulting subatomic interactions are then studied in a surrounding particle detector. Examples of such faci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |