Coins In A Fountain
   HOME





Coins In A Fountain
Coins in a fountain is a problem in combinatorial mathematics that involves a generating function. In this problem, a ''fountain'' is an arrangement of non-overlapping unit circles into horizontal rows in the plane so that consecutive circles in the bottom row are tangent to each other, and such that each circle in a higher row is tangent to two coins from the next row below it. Above the bottom row, consecutive coins are not required to touch. The problem asks for the number of different fountains of n coins with k coins in the bottom row. Solution The above sequence show the number of ways in which ''n'' coins can be stacked. So, for example for 9 coins we have 45 different ways of stacking them in a fountain. The number f(n,k) which is the solution for the above stated problem is then given by the coefficients of the polynomial of the following generating function: Such generating function In mathematics, a generating function is a representation of an infinite sequence of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generating Function
In mathematics, a generating function is a representation of an infinite sequence of numbers as the coefficients of a formal power series. Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in principle has a generating function of each type (except that Lambert and Dirichlet series require indices to start at 1 rather than 0), but the ease with which they can be handled may differ considerably. The particular generating function, if any, that is most useful in a given context will depend upon the nature of the sequence and the details of the problem being addressed. Generating functions are sometimes called generating series, in that a series of terms can be said to be the generator of its sequence ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unit Circle
In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane. In topology, it is often denoted as because it is a one-dimensional unit -sphere. If is a point on the unit circle's circumference, then and are the lengths of the legs of a right triangle whose hypotenuse has length 1. Thus, by the Pythagorean theorem, and satisfy the equation x^2 + y^2 = 1. Since for all , and since the reflection of any point on the unit circle about the - or -axis is also on the unit circle, the above equation holds for all points on the unit circle, not only those in the first quadrant. The interior of the unit circle is called the open unit disk, while the interior of the unit circle combined with the unit circle itself is called the closed unit disk. One may also use other notions of "dis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent Circles
In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency: internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the use of materials. Two given circles Two circles are mutually and externally tangent if distance between their centers is equal to the sum of their radii Steiner chains Pappus chains Three given circles: Apollonius' problem Apollonius' problem is to construct circles that are tangent to three given circles. Apollonian gasket If a circle is iteratively inscribed into the interstitial curved triangles between three mutually tangent circles, an Apollonian gasket results, one of the earliest fractals described in print. Malfatti's problem Malfatti's problem is to carve three cylinders from a triangular block of marble, using ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]