Classification Theorems
In mathematics, a classification theorem answers the classification problem: "What are the objects of a given type, up to some equivalence?". It gives a non-redundant enumeration: each object is equivalent to exactly one class. A few issues related to classification are the following. *The equivalence problem is "given two objects, determine if they are equivalent". *A complete set of invariants, together with which invariants are realizable, solves the classification problem, and is often a step in solving it. (A combination of invariant values is realizable if there in fact exists an object whose invariants take on the specified set of values) *A (together with which invariants are realizable) solves both the classification problem and the equivalence problem. * A canonical form solves the classification problem, and is more data: it not only classifies every class, but provides a distinguished (canonical) element of each class. There exist many classification theorems in mat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classification
Classification is the activity of assigning objects to some pre-existing classes or categories. This is distinct from the task of establishing the classes themselves (for example through cluster analysis). Examples include diagnostic tests, identifying spam emails and deciding whether to give someone a driving license. As well as 'category', synonyms or near-synonyms for 'class' include 'type', 'species', 'order', 'concept', 'taxon', 'group', 'identification' and 'division'. The meaning of the word 'classification' (and its synonyms) may take on one of several related meanings. It may encompass both classification and the creation of classes, as for example in 'the task of categorizing pages in Wikipedia'; this overall activity is listed under taxonomy. It may refer exclusively to the underlying scheme of classes (which otherwise may be called a taxonomy). Or it may refer to the label given to an object by the classifier. Classification is a part of many different kinds of activ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equality. Any number a is equal to itself (reflexive). If a = b, then b = a (symmetric). If a = b and b = c, then a = c (transitive). Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definitions A binary relation \,\si ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Enumeration
An enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the element (mathematics), elements of a Set (mathematics), set. The precise requirements for an enumeration (for example, whether the set must be finite set, finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ... for the set of positive integers), but in other cases it may be necessary to impose a (perhaps arbitrary) ordering. In some contexts, such as enumerative combinatorics, the term ''enumeration'' is used more in the sense of ''counting'' – with emphasis on determination of the number of elements that a set contains, rather than the production of an explicit listing of those elements. Combinatorics In combinatorics, enumeration means cou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complete Set Of Invariants
In mathematics, a complete set of invariants for a classification problem is a collection of maps :f_i : X \to Y_i (where X is the collection of objects being classified, up to some equivalence relation \sim, and the Y_i are some sets), such that x \sim x' if and only if f_i(x) = f_i(x') for all i. In words, such that two objects are equivalent if and only if all invariants are equal.. See in particulap. 97 Symbolically, a complete set of invariants is a collection of maps such that :\left( \prod f_i \right) : (X/\sim) \to \left( \prod Y_i \right) is injective. As invariants are, by definition, equal on equivalent objects, equality of invariants is a ''necessary'' condition for equivalence; a ''complete'' set of invariants is a set such that equality of these is also ''sufficient'' for equivalence. In the context of a group action, this may be stated as: invariants are functions of coinvariants (equivalence classes, orbits), and a complete set of invariants characterizes t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Canonical Form
In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an object and allows it to be identified in a unique way. The distinction between "canonical" and "normal" forms varies from subfield to subfield. In most fields, a canonical form specifies a ''unique'' representation for every object, while a normal form simply specifies its form, without the requirement of uniqueness. The canonical form of a positive integer in decimal representation is a finite sequence of digits that does not begin with zero. More generally, for a class of objects on which an equivalence relation is defined, a canonical form consists in the choice of a specific object in each class. For example: *Jordan normal form is a canonical form for matrix similarity. *The row echelon form is a canonical form, when one considers as equ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Platonic Solid
In geometry, a Platonic solid is a Convex polytope, convex, regular polyhedron in three-dimensional space, three-dimensional Euclidean space. Being a regular polyhedron means that the face (geometry), faces are congruence (geometry), congruent (identical in shape and size) regular polygons (all angles congruent and all edge (geometry), edges congruent), and the same number of faces meet at each Vertex (geometry), vertex. There are only five such polyhedra: Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato, who hypothesized in one of his dialogues, the ''Timaeus (dialogue), Timaeus'', that the classical elements were made of these regular solids. History The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Surfaces
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, but, in the Italian school of algebraic geometry , and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one, varieties are classified by only the topological genus, but, in dimension two, one needs to distinguish the arithmetic genus p_a and the geometric genus p_g because one cannot distinguish birationally only the topological genus. Then, irregularity is introduced for the classification of varieties. A summary of the results (in detail, for each ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ratner's Theorems
In mathematics, Ratner's theorems are a group of major theorems in ergodic theory concerning unipotent flows on homogeneous spaces proved by Marina Ratner around 1990. The theorems grew out of Ratner's earlier work on horocycle flows. The study of the dynamics of unipotent flows played a decisive role in the proof of the Oppenheim conjecture by Grigory Margulis. Ratner's theorems have guided key advances in the understanding of the dynamics of unipotent flows. Their later generalizations provide ways to both sharpen the results and extend the theory to the setting of arbitrary semisimple algebraic groups over a local field. Short description The Ratner orbit closure theorem asserts that the closures of orbits of unipotent flows on the quotient of a Lie group by a lattice are nice, geometric subsets. The Ratner equidistribution theorem further asserts that each such orbit is equidistributed in its closure. The Ratner measure classification theorem is the weaker statement that e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Theorems
This is a list of notable theorems. Lists of theorems and similar statements include: * List of algebras *List of algorithms * List of axioms * List of conjectures *List of data structures * List of derivatives and integrals in alternative calculi *List of equations * List of fundamental theorems * List of hypotheses *List of inequalities * Lists of integrals * List of laws * List of lemmas * List of limits * List of logarithmic identities * List of mathematical functions *List of mathematical identities * List of mathematical proofs * List of misnamed theorems * List of scientific laws * List of theories Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields. {{TOC left, limit=2 Logics and foundations * Ax–Grothendieck theorem (''model theory'') * Barwise compactness theorem (''mathematical logic'') * Borel determinacy theorem (''set theory'') * Büchi-Elgot-Trakhtenbrot theorem (''mathematical logic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Theorems
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |