HOME





Classification Of Electromagnetic Fields
In differential geometry and theoretical physics, the classification of electromagnetic fields is a pointwise classification of bivectors at each point of a Lorentzian manifold. It is used in the study of solutions of Maxwell's equations and has applications in Einstein's theory of relativity. Classification theorem The electromagnetic field at a point ''p'' (i.e. an event) of a Lorentzian spacetime is represented by a real bivector defined over the tangent space at ''p''. The tangent space at ''p'' is isometric as a real inner product space to E1,3. That is, it has the same notion of vector magnitude and angle as Minkowski spacetime. To simplify the notation, we will assume the spacetime ''is'' Minkowski spacetime. This tends to blur the distinction between the tangent space at ''p'' and the underlying manifold; fortunately, nothing is lost by this specialization, for reasons we discuss as the end of the article. The classification theorem for electromagnetic fields characteri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Null Vector (Minkowski Space)
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others said it "was grown on experimental physical grounds". Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure by which special relativity is formalized. While the individual components in Euclidean space and time might differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total interval in spacetime between events.This makes spacetime distance an invariant. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Peeling Theorem
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, which are distinct but closely intertwined phenomena. Electromagnetic forces occur between any two charged particles. Electric forces cause an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs between charged particles in relative motion. These two forces are described in terms of electromagnetic fields. Macroscopic charged objects are described in terms of Coulomb's law for electricity and Ampère's force law for magnetism; the Lorentz force describes microscopic charged particles. The electromagnetic force is responsible for ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frame Fields In General Relativity
In general relativity, a frame field (also called a tetrad or vierbein) is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by \vec_0 and the three spacelike unit vector fields by \vec_1, \vec_2, \, \vec_3. All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field. Frame fields were introduced into general relativity by Albert Einstein in 1928 and by Hermann Weyl in 1929.Hermann Weyl "Elektron und Gravitation I", ''Zeitschrift Physik'', 56, p330–352, 1929. The index notation for tetrads is explained in tetrad (index notation). Physical interpretation Frame fields of a Lorentzian manifold always correspond to a family of ideal observers immersed in the given spacetime; the integral curves of the timelike unit vector field are the worldlines of thes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Principle
The equivalence principle is the hypothesis that the observed equivalence of gravitational and inertial mass is a consequence of nature. The weak form, known for centuries, relates to masses of any composition in free fall taking the same trajectories and landing at identical times. The extended form by Albert Einstein requires special relativity to also hold in free fall and requires the weak equivalence to be valid everywhere. This form was a critical input for the development of the theory of general relativity. The strong form requires Einstein's form to work for stellar objects. Highly precise experimental tests of the principle limit possible deviations from equivalence to be very small. Concept In classical mechanics, Newton's equation of motion in a gravitational field, written out in full, is: : inertial mass × acceleration = gravitational mass × gravitational acceleration Careful experiments have shown that the inertial mass on the left side and gravit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inertial Frame Of Reference
In classical physics and special relativity, an inertial frame of reference (also called an inertial space or a Galilean reference frame) is a frame of reference in which objects exhibit inertia: they remain at rest or in uniform motion relative to the frame until acted upon by external forces. In such a frame, the laws of nature can be observed without the need to correct for acceleration. All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's laws of motion#Newton's first law, Newton's first law of motion holds. Such frames are known as inertial. Some physicists, like Isaac Newton, originally thought that one of these frames was absolute — the one approximated by the fixed stars. However, this is not required for the definition, and it is now known that t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane Wave
In physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ..., a plane wave is a special case of a wave or field: a physical quantity whose value, at any given moment, is constant through any plane that is perpendicular to a fixed direction in space. For any position \vec x in space and any time t, the value of such a field can be written as F(\vec x,t) = G(\vec x \cdot \vec n, t), where \vec n is a unit-length vector, and G(d,t) is a function that gives the field's value as dependent on only two real parameters: the time t, and the scalar-valued displacement d = \vec x \cdot \vec n of the point \vec x along the direction \vec n. The displacement is constant over each plane perpendicular to \vec n. The values of the field F may be scalars, vectors, or any other physical or ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Metric
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of general_relativity, gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a spacetime interval between any two Event (relativity), events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others said it "was grown on experimental physical grounds". Minkowski space is closely associated with Albert Einstein, Einstein's theories of special relativity and general relativity and is the most common mathematical structure by which special relativity is formalized. While the individual components in Euclidean space and time might differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total interval in spacetime betw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Index Gymnastics
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle \mathrmM and the cotangent bundle \mathrm^* M of a Riemannian or pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. These isomorphisms are global versions of the canonical isomorphism between an inner product space and its dual. The term ''musical'' refers to the use of the musical notation symbols \flat (flat) and \sharp (sharp). In the notation of Ricci calculus and mathematical physics, the idea is expressed as the raising and lowering of indices. Raising and lowering indices are a form of index manipulation in tensor expressions. In certain specialized applications, such as on Poisson manifolds, the relationship may fail to be an isomorphism at singular points, and so, for these cases, is technically only a homomorphism. Motivation In linear algebra, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Geometrized Unit System
A geometrized unit system or geometrodynamic unit system is a system of natural units in which the base physical units are chosen so that the speed of light in vacuum, ''c'', and the gravitational constant, ''G'', are set equal to unity. : c = 1 \ : G = 1 \ The geometrized unit system is not a completely defined system. Some systems are geometrized unit systems in the sense that they set these, in addition to other constants, to unity, for example Stoney units and Planck units. This system is useful in physics, especially in the special and general theories of relativity. All physical quantities are identified with geometric quantities such as areas, lengths, dimensionless numbers, path curvatures, or sectional curvatures. Many equations in relativistic physics appear simpler when expressed in geometric units, because all occurrences of ''G'' and of ''c'' drop out. For example, the Schwarzschild radius of a nonrotating uncharged black hole with mass ''m'' becomes . For thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Space
In physics, Minkowski space (or Minkowski spacetime) () is the main mathematical description of spacetime in the absence of gravitation. It combines inertial space and time manifolds into a four-dimensional model. The model helps show how a spacetime interval between any two events is independent of the inertial frame of reference in which they are recorded. Mathematician Hermann Minkowski developed it from the work of Hendrik Lorentz, Henri Poincaré, and others said it "was grown on experimental physical grounds". Minkowski space is closely associated with Einstein's theories of special relativity and general relativity and is the most common mathematical structure by which special relativity is formalized. While the individual components in Euclidean space and time might differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total interval in spacetime between events.This makes spacetime distance an inva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Electromagnetic Tensor
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor (sometimes called the field strength tensor, Faraday tensor or Maxwell bivector) is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was developed by Arnold Sommerfeld after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written concisely, and allows for the quantization of the electromagnetic field by the Lagrangian formulation described below. Definition The electromagnetic tensor, conventionally labelled ''F'', is defined as the exterior derivative of the electromagnetic four-potential, ''A'', a differential 1-form: :F \ \stackrel\ \mathrmA. Therefore, ''F'' is a differential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form, :F_ = \partial_\mu A_\nu - \partial_\nu A_\mu. where \partial is the four-gradient and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]