HOME





Chomsky Hierarchy
The Chomsky hierarchy in the fields of formal language theory, computer science, and linguistics, is a containment hierarchy of classes of formal grammars. A formal grammar describes how to form strings from a formal language's alphabet that are valid according to the language's syntax. The linguist Noam Chomsky theorized that four different classes of formal grammars existed that could generate increasingly complex languages. Each class can also completely generate the language of all inferior classes (set inclusive). History The general idea of a hierarchy of grammars was first described by Noam Chomsky in "Three models for the description of language" during the formalization of transformational-generative grammar (TGG). Marcel-Paul Schützenberger also played a role in the development of the theory of formal languages; the paper "The algebraic theory of context free languages" describes the modern hierarchy, including context-free grammars. Independently, alongside linguis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Context-free Language
In formal language theory, a context-free language (CFL), also called a Chomsky type-2 language, is a language generated by a context-free grammar (CFG). Context-free languages have many applications in programming languages, in particular, most arithmetic expressions are generated by context-free grammars. Background Context-free grammar Different context-free grammars can generate the same context-free language. Intrinsic properties of the language can be distinguished from extrinsic properties of a particular grammar by comparing multiple grammars that describe the language. Automata The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing. Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct. Examples An e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Name Resolution (programming Languages)
In programming languages, name resolution is the resolution of the tokens within program expressions to the intended program components. Overview Expressions in computer programs reference variables, data types, functions, classes, objects, libraries, packages and other entities by name. In that context, name resolution refers to the association of those not-necessarily-unique names with the intended program entities. The algorithms that determine what those identifiers refer to in specific contexts are part of the language definition. The complexity of these algorithms is influenced by the sophistication of the language. For example, name resolution in assembly language usually involves only a single simple table lookup, while name resolution in C++ is extremely complicated as it involves: * namespaces, which make it possible for an identifier to have different meanings depending on its associated namespace; * scopes, which make it possible for an identifier to have differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Programming Language
A programming language is a system of notation for writing computer programs. Programming languages are described in terms of their Syntax (programming languages), syntax (form) and semantics (computer science), semantics (meaning), usually defined by a formal language. Languages usually provide features such as a type system, Variable (computer science), variables, and mechanisms for Exception handling (programming), error handling. An Programming language implementation, implementation of a programming language is required in order to Execution (computing), execute programs, namely an Interpreter (computing), interpreter or a compiler. An interpreter directly executes the source code, while a compiler produces an executable program. Computer architecture has strongly influenced the design of programming languages, with the most common type (imperative languages—which implement operations in a specified order) developed to perform well on the popular von Neumann architecture. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Deterministic Context-free Language
In formal language theory, deterministic context-free languages (DCFL) are a proper subset of context-free languages. They are context-free languages that can be accepted by a deterministic pushdown automaton. DCFLs are always unambiguous, meaning that they admit an unambiguous grammar. There are non-deterministic unambiguous CFLs, so DCFLs form a proper subset of unambiguous CFLs. DCFLs are of great practical interest, as they can be parsed in linear time, and various restricted forms of DCFGs admit simple practical parsers. They are thus widely used throughout computer science. Description The notion of the DCFL is closely related to the deterministic pushdown automaton (DPDA). It is where the language power of pushdown automata is reduced to if we make them deterministic; the pushdown automata become unable to choose between different state-transition alternatives and as a consequence cannot recognize all context-free languages. Unambiguous grammars do not always generate a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Regular Expression
A regular expression (shortened as regex or regexp), sometimes referred to as rational expression, is a sequence of characters that specifies a match pattern in text. Usually such patterns are used by string-searching algorithms for "find" or "find and replace" operations on strings, or for input validation. Regular expression techniques are developed in theoretical computer science and formal language theory. The concept of regular expressions began in the 1950s, when the American mathematician Stephen Cole Kleene formalized the concept of a regular language. They came into common use with Unix text-processing utilities. Different syntaxes for writing regular expressions have existed since the 1980s, one being the POSIX standard and another, widely used, being the Perl syntax. Regular expressions are used in search engines, in search and replace dialogs of word processors and text editors, in text processing utilities such as sed and AWK, and in lexical analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite-state Automaton
A finite-state machine (FSM) or finite-state automaton (FSA, plural: ''automata''), finite automaton, or simply a state machine, is a mathematical model of computation. It is an abstract machine that can be in exactly one of a finite number of ''states'' at any given time. The FSM can change from one state to another in response to some inputs; the change from one state to another is called a ''transition''. An FSM is defined by a list of its states, its initial state, and the inputs that trigger each transition. Finite-state machines are of two types— deterministic finite-state machines and non-deterministic finite-state machines. For any non-deterministic finite-state machine, an equivalent deterministic one can be constructed. The behavior of state machines can be observed in many devices in modern society that perform a predetermined sequence of actions depending on a sequence of events with which they are presented. Simple examples are: vending machines, which dispens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursive Language
In mathematics, logic and computer science, a recursive (or ''decidable'') language is a recursive subset of the Kleene closure of an alphabet. Equivalently, a formal language is recursive if there exists a Turing machine that decides the formal language. In theoretical computer science, such always-halting Turing machines are called total Turing machines or algorithms. The concept of decidability may be extended to other models of computation. For example, one may speak of languages decidable on a non-deterministic Turing machine. Therefore, whenever an ambiguity is possible, the synonym used for "recursive language" is Turing-decidable language, rather than simply ''decidable''. The class of all recursive languages is often called R, although this name is also used for the class RP. This type of language was not defined in the Chomsky hierarchy. All recursive languages are also recursively enumerable. All regular, context-free and context-sensitive languages are recur ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turing Machine
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm. The machine operates on an infinite memory tape divided into discrete mathematics, discrete cells, each of which can hold a single symbol drawn from a finite set of symbols called the Alphabet (formal languages), alphabet of the machine. It has a "head" that, at any point in the machine's operation, is positioned over one of these cells, and a "state" selected from a finite set of states. At each step of its operation, the head reads the symbol in its cell. Then, based on the symbol and the machine's own present state, the machine writes a symbol into the same cell, and moves the head one step to the left or the right, or halts the computation. The choice of which replacement symbol to write, which direction to move the head, and whet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Recursively Enumerable Language
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language. Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages. All regular, context-free, context-sensitive and recursive languages are recursively enumerable. The class of all recursively enumerable languages is called RE. Definitions There are three equivalent definitions of a recursively enumerable language: # A recursively enumerable language is a recursively enumerable subset in the set of all possible words over the alphabet of the language. # A recursively enumerable language is a formal language for which there exists a Turing mac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Unrestricted Grammar
In automata theory, the class of unrestricted grammars (also called semi-Thue, type-0 or phrase structure grammars) is the most general class of grammars in the Chomsky hierarchy. No restrictions are made on the productions of an unrestricted grammar, other than each of their left-hand sides being non-empty. This grammar class can generate arbitrary recursively enumerable languages. Formal definition An unrestricted grammar is a formal grammar G = (N, T, P, S), where * N is a finite set of nonterminal symbols, * T is a finite set of terminal symbols with N and T disjoint,Actually, T\cap N=\emptyset is not strictly necessary since unrestricted grammars make no real distinction between the two. The designation exists purely so that one knows when to stop generating sentential forms of the grammar; more precisely, the language L(G) recognized by G is restricted to strings of terminal symbols. * P is a finite set of production rules of the form \alpha \to \beta , where \alpha an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Bounded Automaton
In computer science, a linear bounded automaton (plural linear bounded automata, abbreviated LBA) is a restricted form of Turing machine. Operation A linear bounded automaton is a Turing machine that satisfies the following three conditions: * Its input alphabet includes two special symbols, serving as left and right endmarkers. * Its transitions may not print other symbols over the endmarkers. * Its transitions may neither move to the left of the left endmarker nor to the right of the right endmarker. In other words: instead of having potentially infinite tape on which to compute, computation is restricted to the portion of the tape containing the input plus the two tape squares holding the endmarkers. An alternative, less restrictive definition is as follows: * Like a Turing machine, an LBA possesses a tape made up of cells that can contain symbols from a finite alphabet, a head that can read from or write to one cell on the tape at a time and can be moved, and a finite num ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]