Chien's Search
   HOME





Chien's Search
In abstract algebra, the Chien search, named after Robert Tienwen Chien, is a fast algorithm for determining roots of polynomials defined over a finite field. Chien search is commonly used to find the roots of error-locator polynomials encountered in decoding Reed-Solomon codes and BCH codes. Algorithm The problem is to find the roots of the polynomial (over the finite field ): \Lambda(x) = \lambda_0 + \lambda_1 x + \lambda_2 x^2 + \cdots + \lambda_t x^t The roots may be found using brute force: there are a finite number of , so the polynomial can be evaluated for each element . If the polynomial evaluates to zero, then that element is a root. For the trivial case , only the coefficient need be tested for zero. Below, the only concern will be for non-zero . A straightforward evaluation of the polynomial involves general multiplications and additions. A more efficient scheme would use Horner's method In mathematics and computer science, Horner's method (or Horner's sch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are set (mathematics), sets with specific operation (mathematics), operations acting on their elements. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathematics), modules, vector spaces, lattice (order), lattices, and algebra over a field, algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variable (mathematics), variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in mathematical education, pedagogy. Algebraic structures, with their associated homomorphisms, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Tienwen Chien
Robert Tienwen Chien (; November 20, 1931 – December 8, 1983) was an American computer scientist concerned largely with research in information theory, fault-tolerance, and artificial intelligence (AI), director of the Coordinated Science Laboratory (CSL) at the University of Illinois at Urbana–Champaign, and known for his invention of the Chien search and seminal contributions to the PMC model in system level fault diagnosis. Biography Robert Tienwen Chien was born in Wuxi, Jiangsu, China as the youngest of eight children, and emigrated to the United States in 1952 to continue his technical studies, enrolling at the University of Illinois at Urbana–Champaign. He received his B.S. in electrical engineering in 1954, and continued graduate studies at Illinois, receiving his A.M in Mathematics in 1957, and his Ph.D. in electrical engineering in 1958. He worked as a research scientist at IBM's Thomas J. Watson Research Center in Yorktown, New York, then the world's leading ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers, and has a finite number of terms. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problem (mathematics education), word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field (mathematics), field that contains a finite number of Element (mathematics), elements. As with any field, a finite field is a Set (mathematics), set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are the integers mod n, integers mod p when p is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number p and every positive integer k there are fields of order p^k. All finite fields of a given order are isomorphism, isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set that is a fiel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




BCH Code
In coding theory, the Bose–Chaudhuri–Hocquenghem codes (BCH codes) form a class of cyclic error-correcting codes that are constructed using polynomials over a finite field (also called a '' Galois field''). BCH codes were invented in 1959 by French mathematician Alexis Hocquenghem, and independently in 1960 by Raj Chandra Bose and D. K. Ray-Chaudhuri. The name ''Bose–Chaudhuri–Hocquenghem'' (and the acronym ''BCH'') arises from the initials of the inventors' surnames (mistakenly, in the case of Ray-Chaudhuri). One of the key features of BCH codes is that during code design, there is a precise control over the number of symbol errors correctable by the code. In particular, it is possible to design binary BCH codes that can correct multiple bit errors. Another advantage of BCH codes is the ease with which they can be decoded, namely, via an algebraic method known as syndrome decoding. This simplifies the design of the decoder for these codes, using small ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Horner's Method
In mathematics and computer science, Horner's method (or Horner's scheme) is an algorithm for polynomial evaluation. Although named after William George Horner, this method is much older, as it has been attributed to Joseph-Louis Lagrange by Horner himself, and can be traced back many hundreds of years to Chinese and Persian mathematicians. After the introduction of computers, this algorithm became fundamental for computing efficiently with polynomials. The algorithm is based on Horner's rule, in which a polynomial is written in ''nested form'': \begin &a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n \\ = &a_0 + x \bigg(a_1 + x \Big(a_2 + x \big(a_3 + \cdots + x(a_ + x \, a_n) \cdots \big) \Big) \bigg). \end This allows the evaluation of a polynomial of degree with only n multiplications and n additions. This is optimal, since there are polynomials of degree that cannot be evaluated with fewer arithmetic operations. Alternatively, Horner's method and also refers to a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primitive Element (finite Field)
In field theory, a primitive element of a finite field is a generator of the multiplicative group of the field. In other words, is called a primitive element if it is a primitive th root of unity in ; this means that each non-zero element of can be written as for some natural number . If is a prime number, the elements of can be identified with the integers modulo . In this case, a primitive element is also called a primitive root modulo . For example, 2 is a primitive element of the field and , but not of since it generates the cyclic subgroup of order 3; however, 3 is a primitive element of . The minimal polynomial of a primitive element is a primitive polynomial. Properties Number of primitive elements The number of primitive elements in a finite field is , where is Euler's totient function, which counts the number of elements less than or equal to that are coprime In number theory, two integers and are coprime, relatively prime or mutually prime i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Error Detection And Correction
In information theory and coding theory with applications in computer science and telecommunications, error detection and correction (EDAC) or error control are techniques that enable reliable delivery of digital data over unreliable communication channels. Many communication channels are subject to channel noise, and thus errors may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting such errors, while error correction enables reconstruction of the original data in many cases. Definitions ''Error detection'' is the detection of errors caused by noise or other impairments during transmission from the transmitter to the receiver. ''Error correction'' is the detection of errors and reconstruction of the original, error-free data. History In classical antiquity, copyists of the Hebrew Bible were paid for their work according to the number of stichs (lines of verse). As the prose books of the Bible were hardly ever w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]