HOME





Chern–Simons Theory
The Chern–Simons theory is a 3-dimensional topological quantum field theory of Schwarz type. It was discovered first by mathematical physicist Albert Schwarz. It is named after mathematicians Shiing-Shen Chern and James Harris Simons, who introduced the Chern–Simons 3-form. In the Chern–Simons theory, the action is proportional to the integral of the Chern–Simons 3-form. In condensed-matter physics, Chern–Simons theory describes composite fermions and the topological order in fractional quantum Hall effect states. In mathematics, it has been used to calculate knot invariants and three-manifold invariants such as the Jones polynomial. Particularly, Chern–Simons theory is specified by a choice of simple Lie group G known as the gauge group of the theory and also a number referred to as the ''level'' of the theory, which is a constant that multiplies the action. The action is gauge dependent, however the partition function of the quantum theory is well-defined whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Quantum Field Theory
In gauge theory and mathematical physics, a topological quantum field theory (or topological field theory or TQFT) is a quantum field theory that computes topological invariants. While TQFTs were invented by physicists, they are also of mathematical interest, being related to, among other things, knot theory and the theory of four-manifolds in algebraic topology, and to the theory of moduli spaces in algebraic geometry. Donaldson, Jones, Witten, and Kontsevich have all won Fields Medals for mathematical work related to topological field theory. In condensed matter physics, topological quantum field theories are the low-energy effective theories of topologically ordered states, such as fractional quantum Hall states, string-net condensed states, and other strongly correlated quantum liquid states. Overview In a topological field theory, correlation functions do not depend on the metric of spacetime. This means that the theory is not sensitive to changes in the shape ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Well-defined
In mathematics, a well-defined expression or unambiguous expression is an expression (mathematics), expression whose definition assigns it a unique interpretation or value. Otherwise, the expression is said to be ''not well defined'', ill defined or ''ambiguous''. A function is well defined if it gives the same result when the representation of the input is changed without changing the value of the input. For instance, if f takes real numbers as input, and if f(0.5) does not equal f(1/2) then f is not well defined (and thus not a function). The term ''well-defined'' can also be used to indicate that a logical expression is unambiguous or uncontradictory. A function that is not well defined is not the same as a function that is undefined (mathematics), undefined. For example, if f(x)=\frac, then even though f(0) is undefined, this does not mean that the function is ''not'' well defined; rather, 0 is not in the Domain of a function, domain of f. Example Let A_0,A_1 be sets, let A = ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a Mathematics, mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of Calculus, single variable calculus, vector calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as classical antiquity, antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Nikolai Lobachevsky, Lobachevsky. The simplest examples of smooth spaces are the Differential geometry of curves, plane and space curves and Differential geometry of surfaces, surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Classes
In mathematics, a characteristic class is a way of associating to each principal bundle of ''X'' a cohomology class of ''X''. The cohomology class measures the extent to which the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry. The notion of characteristic class arose in 1935 in the work of Eduard Stiefel and Hassler Whitney about vector fields on manifolds. Definition Let ''G'' be a topological group, and for a topological space X, write b_G(X) for the set of isomorphism classes of principal ''G''-bundles over X. This b_G is a contravariant functor from Top (the category of topological spaces and continuous functions) to Set (the category of sets and functions), sending a map f\colon X\to Y to the pullback operation f^*\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Rham Cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every Closed and exact differential forms, exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of Hole#In mathematics, "holes" in the manifold, and the de Rham cohomology groups comprise a set of Topological invariant, topological invariants of smooth manifolds that precisely quantify this relationship. Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold , with the exterior derivative as the differential: :0 \to \Omega^0(M)\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is due both to his original contributions to a remarkably broad spectrum of mathematical theories, and to the mark he left on mathematical practice and style, through some of his own works as well as through the Bourbaki group, of which he was one of the principal founders. Life André Weil was born in Paris to agnostic Alsatian Jewish parents who fled the annexation of Alsace-Lorraine by the German Empire after the Franco-Prussian War in 1870–71. Simone Weil, who would later become a famous philosopher, was Weil's younger sister and only sibling. He studied in Paris, Rome and Göttingen and received his doctorate in 1928. While in Germany, Weil befriended Carl Ludwig Siegel. Starting in 1930, he spent two academic years at Aligarh Mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wess–Zumino–Witten Model
In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group (or supergroup), and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra (or Lie superalgebra). By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra. Action Definition For \Sigma a Riemann surface, G a Lie group, and k a (generally complex) number, let us define the G-WZW model on \Sigma at the level k. The model is a nonlinear sigma model whose action is a functional of a field \gamma:\Sigma \to G: :S_k(\gamma)= -\frac \int_ d^2x\, \mathcal \left (\gamma^ \partial^\mu \gamma, \gamma^ \partial_\mu \gamma \right ) + 2\pi k S^(\gamma). Here, \Sigma is equipped with a fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Virasoro Conformal Block
In two-dimensional conformal field theory, Virasoro conformal blocks (named after Miguel Ángel Virasoro (physicist), Miguel Ángel Virasoro) are special functions that serve as building blocks of correlation function (quantum field theory), correlation functions. On a given punctured Riemann surface, Virasoro conformal blocks form a particular basis of the space of solutions of the Two-dimensional conformal field theory#Conformal Ward identities, conformal Ward identities. Zero-point blocks on the torus are character theory, characters of representations of the Virasoro algebra; four-point blocks on the sphere reduce to hypergeometric functions in special cases, but are in general much more complicated. In two dimensions as in other dimensions, conformal blocks play an essential role in the conformal bootstrap approach to conformal field theory. Definition Definition from OPEs Using operator product expansions (OPEs), an N-point function on the sphere can be written as a com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fusion Rules
In mathematics and theoretical physics, fusion rules are rules that determine the exact decomposition of the tensor product of two representations of a group into a direct sum of irreducible representations. The term is often used in the context of two-dimensional conformal field theory where the relevant group is generated by the Virasoro algebra, the relevant representations are the conformal families associated with a primary field and the tensor product is realized by operator product expansion In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex ...s. The fusion rules contain the information about the kind of families that appear on the right-hand side of these OPEs, including the multiplicities. More generally, integrable models in 2 dimensions which aren't conformal field theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Anyon
In physics, an anyon is a type of quasiparticle so far observed only in two-dimensional physical system, systems. In three-dimensional systems, only two kinds of elementary particles are seen: fermions and bosons. Anyons have statistical properties intermediate between fermions and bosons. In general, the operation of exchange symmetry, exchanging two identical particles, although it may cause a global phase shift, cannot affect observables. Anyons are generally classified as ''abelian'' or ''non-abelian''. Abelian anyons, detected by two experiments in 2020, play a major role in the fractional quantum Hall effect. Introduction The statistical mechanics of large many-body systems obeys laws described by Maxwell–Boltzmann statistics. Quantum statistics is more complicated because of the different behaviors of two different kinds of particles called fermions and bosons. In two-dimensional systems, however, there is a third type of particle, called an anyon. In a two-dimens ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]