HOME





Characteristic Polynomial
In linear algebra, the characteristic polynomial of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The characteristic polynomial of an endomorphism of a finite-dimensional vector space is the characteristic polynomial of the matrix of that endomorphism over any basis (that is, the characteristic polynomial does not depend on the choice of a basis). The characteristic equation, also known as the determinantal equation, is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory, the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix. Motivation In linear algebra, eigenvalues and eigenvectors play a fundamental role, since, given a linear transformation, an eigenvector is a vector whose direction is not changed by the transformation, and the correspondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Algebra
Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathematics), matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as line (geometry), lines, plane (geometry), planes and rotation (mathematics), rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to Space of functions, function spaces. Linear algebra is also used in most sciences and fields of engineering because it allows mathematical model, modeling many natural phenomena, and computing efficiently with such models. For nonlinear systems, which cannot be modeled with linear algebra, it is often used for dealing with first-order a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faddeev–LeVerrier Algorithm
In mathematics (linear algebra), the Faddeev–LeVerrier algorithm is a recursive method to calculate the coefficients of the characteristic polynomial p_A(\lambda)=\det (\lambda I_n - A) of a square matrix, , named after Dmitry Konstantinovich Faddeev and Urbain Le Verrier. Calculation of this polynomial yields the eigenvalues of as its roots; as a matrix polynomial in the matrix itself, it vanishes by the Cayley–Hamilton theorem. Computing the characteristic polynomial directly from the definition of the determinant is computationally cumbersome insofar as it introduces a new symbolic quantity \lambda; by contrast, the Faddeev-Le Verrier algorithm works directly with coefficients of matrix A. The algorithm has been independently rediscovered several times in different forms. It was first published in 1840 by Urbain Le Verrier, subsequently redeveloped by P. Horst, Jean-Marie Souriau, in its present form here by Faddeev and Sominsky, and further by J. S. Frame, and others ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principal Minor
In linear algebra, a minor of a matrix (mathematics), matrix is the determinant of some smaller square matrix generated from by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which are useful for computing both the determinant and Inverse matrix, inverse of square matrices. The requirement that the square matrix be smaller than the original matrix is often omitted in the definition. Definition and illustration First minors If is a square matrix, then the ''minor'' of the entry in the -th row and -th column (also called the ''minor'', or a ''first minor'') is the determinant of the submatrix formed by deleting the -th row and -th column. This number is often denoted . The ''cofactor'' is obtained by multiplying the minor by . To illustrate these definitions, consider the following matrix, \begin 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 & 11 \\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Algebra
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector v in V. The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol \wedge and the fact that the product of two elements of V is "outside" V. The wedge product of k vectors v_1 \wedge v_2 \wedge \dots \wedge v_k is called a ''blade (geometry), blade of degree k'' or ''k-blade''. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: the magnitude (mathematics), magnitude of a bivector, -blade v\wedge w is the area of the parallelogram defined by v and w, and, more generally, the magnitude of a k-blade is the (hyper)volume of the Parallelepiped#Parallelotope, parallelotope defined by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Trace (matrix)
In linear algebra, the trace of a square matrix , denoted , is the sum of the elements on its main diagonal, a_ + a_ + \dots + a_. It is only defined for a square matrix (). The trace of a matrix is the sum of its eigenvalues (counted with multiplicities). Also, for any matrices and of the same size. Thus, similar matrices have the same trace. As a consequence, one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the row and column of . The entries of can be real numbers, complex numbers, or more generally elements of a field . The trace is not defined for non-square matrices. Example Let be a matrix, with \mathb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polynomial Expression
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (mathematics), ring formed from the set (mathematics), set of polynomials in one or more indeterminate (variable), indeterminates (traditionally also called variable (mathematics), variables) with coefficients in another ring (mathematics), ring, often a field (mathematics), field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the Integer#Algebraic_properties, integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, formal power series, rings of formal power series, Ore polynomial ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Polynomial (linear Algebra)
Minimal may refer to: * Minimal (music genre), art music that employs limited or minimal musical materials * "Minimal" (song), 2006 song by Pet Shop Boys * Minimal (supermarket) or miniMAL, a former supermarket chain in Germany and Poland * Minimal (''Dungeons & Dragons''), a creature of magically reduced size in the game ''Dungeons & Dragons'' * Minimal (chocolate), a bean to bar chocolate store in Japan, featured in '' Kantaro: The Sweet Tooth Salaryman'' * Minimal (clothing), an Indonesia clothing-retail company that worked with fashion model Ayu Gani * MINIMAL (restaurant), high end restaurant in Taichung Taichung (, Wade–Giles: '), officially Taichung City, is a special municipality (Taiwan), special municipality in central Taiwan. Taichung is Taiwan's second-largest city, with more than 2.85 million residents, making it the largest city in Ce ..., Taiwan See also * * Minimalism (other) * Maximal (other) * Minimisation (other) * Minimal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Angle
In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrizes the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation. The hyperbola ''xy'' = 1 is rectangular with semi-major axis \sqrt 2, analogous to the circular angle equaling the area of a circular sector in a circle with radius \sqrt 2. Hyperbolic angle is used as the independent variable for the hyperbolic functions sinh, cosh, and tanh, because these functions may be premised on hyperbolic analogies to the corresponding circular (trigonometric) functions by regarding a hyperbolic angle as defining a hyperbolic triangle. The parameter thus becomes one of the most useful in the calculus of real variables. Definition Consider the rectangular hyperbola \textstyle\, and (by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Function
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions are used to express the angle of parallelism in hyperbolic geometry. They are used to express Lorentz boosts as hyperbolic rotations in special relativity. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, and fluid dynamics. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]