HOME





Chandrasekhar–Friedman–Schutz Instability
Chandrasekhar–Friedman–Schutz instability or shortly CFS instability refers to an instability that can occur in rapidly rotating stars with which the instability arises for cases where the gravitational radiation reaction is unable to cope with the change in angular momentum associated with the perturbations. The instability was discovered by Subrahmanyan Chandrasekhar in 1970 and later a simple intuitive explanation for the instability was provided by John L. Friedman and Bernard F. Schutz. Specifically, the instability arises when a non-axisymmetric perturbation mode that appears co-rotating in the inertial frame (from which gravitational waves are observed), is in fact is counter-rotating with respect to the rotating star. Roberts–Stewartson instability and CFS instability Although it has been anticipated a long time (1883) ago by William Thomson (later Lord Kelvin) and Peter Guthrie Tait in their book Treatise on Natural Philosophy that a small presence of viscosity in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stars
A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated to stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy. A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and traces of heavier elements. Its stellar mass, total mass mainly determines its stellar evolution, evolution and eventual fate. A star shines for main sequence, most of its active life due to the thermonu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subrahmanyan Chandrasekhar
Subrahmanyan Chandrasekhar (; 19 October 1910 – 21 August 1995) was an Indian Americans, Indian-American theoretical physicist who made significant contributions to the scientific knowledge about the structure of stars, stellar evolution and black holes. He was awarded the 1983 Nobel Prize in Physics along with William Alfred Fowler, William A. Fowler for theoretical studies of the physical processes of importance to the structure and evolution of the stars. His mathematical treatment of stellar evolution yielded many of the current theoretical models of the later evolutionary stages of massive stars and black holes. Many concepts, institutions and inventions, including the Chandrasekhar limit and the Chandra X-ray Observatory, Chandra X-Ray Observatory, are named after him. Chandrasekhar worked on a wide variety of problems in physics during his lifetime, contributing to the contemporary understanding of stellar structure, white dwarfs, stellar dynamics, stochastic process, r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bernard F
Bernard ('' Bernhard'') is a French and West Germanic masculine given name. It has West Germanic origin and is also a surname. The name is attested from at least the 9th century. West Germanic ''Bernhard'' is composed from the two elements ''bern'' "bear" and ''hard'' "brave, hardy". Its native Old English cognate was ''Beornheard'', which was replaced or merged with the French form ''Bernard'' that was brought to England after the Norman Conquest. The name ''Bernhard'' was notably popular among Old Frisian speakers. Its wider use was popularized due to Saint Bernhard of Clairvaux (canonized in 1174). In Ireland, the name was an anglicized form of Brian. Geographical distribution Bernard is the second most common surname in France. As of 2014, 42.2% of all known bearers of the surname ''Bernard'' were residents of France (frequency 1:392), 12.5% of the United States (1:7,203), 7.0% of Haiti (1:382), 6.6% of Tanzania (1:1,961), 4.8% of Canada (1:1,896), 3.6% of Nigeria (1:12,221 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Waves
Gravitational waves are oscillations of the gravitational field that travel through space at the speed of light; they are generated by the relative motion of gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by Henri Poincaré in 1905 as the gravitational equivalent of electromagnetic waves. In 1916, Albert Einstein demonstrated that gravitational waves result from his general theory of relativity as ripples in spacetime. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation. Newton's law of universal gravitation, part of classical mechanics, does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that is absent from Newtonian physics. Gravitational-wave astronomy has the advantage that, unlike electromagnetic radiation, gravitational waves are not a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

William Thomson, 1st Baron Kelvin
William Thomson, 1st Baron Kelvin (26 June 182417 December 1907), was a British mathematician, Mathematical physics, mathematical physicist and engineer. Born in Belfast, he was the Professor of Natural Philosophy (Glasgow), professor of Natural Philosophy at the University of Glasgow for 53 years, where he undertook significant research on the mathematical analysis of electricity, was instrumental in the formulation of the first and second laws of thermodynamics, and contributed significantly to unifying physics, which was then in its infancy of development as an emerging academic discipline. He received the Royal Society's Copley Medal in 1883 and served as its President of the Royal Society, president from 1890 to 1895. In 1892, he became the first scientist to be elevated to the House of Lords. Absolute temperatures are stated in units of kelvin in Lord Kelvin's honour. While the existence of a coldest possible temperature, absolute zero, was known before his work, Kelvin d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peter Guthrie Tait
Peter Guthrie Tait (28 April 18314 July 1901) was a Scottish Mathematical physics, mathematical physicist and early pioneer in thermodynamics. He is best known for the mathematical physics textbook ''Treatise on Natural Philosophy'', which he co-wrote with William Thomson, 1st Baron Kelvin, Lord Kelvin, and his early investigations into knot theory. His work on knot theory contributed to the eventual formation of topology as a mathematical discipline. His name is known in graph theory mainly for Tait's conjecture on cubic graphs. He is also one of the namesakes of the Tait–Kneser theorem on osculating circles. Early life Tait was born in Dalkeith on 28 April 1831 the only son of Mary Ronaldson and John Tait, secretary to the Walter Montagu Douglas Scott, 5th Duke of Buccleuch, 5th Duke of Buccleuch. He was educated at Dalkeith Grammar School then Edinburgh Academy, where he began his lifelong friendship with James Clerk Maxwell. He studied mathematics and physics at the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Treatise On Natural Philosophy
''Treatise on Natural Philosophy'' was an 1867 text book by William Thomson (later Lord Kelvin) and Peter Guthrie Tait, published by Oxford University Press. The ''Treatise'' was often referred to as T and ''T^1'', as explained by Alexander Macfarlane:A. Macfarlane (1917Lectures on Ten British Physicist of the Nineteenth Century link form Internet Archive. :Maxwell had facetiously referred to Thomson as T and Tait as T^1. Hence the ''Treatise on Natural Philosophy'' came to be commonly referred to as T ''and T^1'' in conversation with mathematicians. Reception The first volume was received by an enthusiastic review in Saturday Review: :The grand result of all concurrent research in modern times has been to confirm what was but perhaps a dream of genius, or an instinct of the keen Greek intellect, that all the operations of nature are rooted and grounded in number and figure. The Treatise was also reviewed as ''Elements of Natural Philosophy'' (1873). Thomson & Tait's ''Treat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paul H
Paul may refer to: People * Paul (given name), a given name, including a list of people * Paul (surname), a list of people * Paul the Apostle, an apostle who wrote many of the books of the New Testament * Ray Hildebrand, half of the singing duo Paul & Paula * Paul Stookey, one-third of the folk music trio Peter, Paul and Mary * Billy Paul, stage name of American soul singer Paul Williams (1934–2016) * Vinnie Paul, drummer for American Metal band Pantera * Paul Avril, pseudonym of Édouard-Henri Avril (1849–1928), French painter and commercial artist * Paul, pen name under which Walter Scott wrote ''Paul's letters to his Kinsfolk'' in 1816 * Jean Paul, pen name of Johann Paul Friedrich Richter (1763–1825), German Romantic writer Places * Paul, Cornwall, a village in the civil parish of Penzance, United Kingdom * Paul (civil parish), Cornwall, United Kingdom * Paul, Alabama, United States, an unincorporated community * Paul, Idaho, United States, a city * Paul, Nebrask ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Keith Stewartson
Keith Stewartson (20 September 1925 – 7 May 1983) was an English mathematician and fellow of the Royal Society. Early life The youngest of three children, Stewartson was born to an English baker in 1925. He was raised in Billingham, County Durham, where he attended Stockton Secondary School, and went to St Catharine's College, Cambridge in 1942. He won the Drury Prize in 1943 for his work in the Mathematical Tripos. Career After graduation, with the Second World War still on-going, Stewartson began employment with the Ministry of Aircraft Production. During his time there he studied compressible fluid flow problems. After the war he returned to Cambridge and received the Mayhew Prize in 1946. He resumed research under the guidance of Leslie Howarth on boundary layer theory. His research led to his first publication, "Correlated incompressible and compressible boundary layers", which was published by the Royal Society in 1949. He received his doctorate the same year and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Maclaurin Spheroid
A Maclaurin spheroid is an oblate spheroid which arises when a self-gravitating fluid body of uniform density rotates with a constant angular velocity. This spheroid is named after the Scottish mathematician Colin Maclaurin, who formulated it for the shape of Earth in 1742. In fact the figure of the Earth is far less oblate than Maclaurin's formula suggests, since the Earth is not homogeneous, but has a dense iron core. The Maclaurin spheroid is considered to be the simplest model of rotating ellipsoidal figures in hydrostatic equilibrium since it assumes uniform density. Maclaurin formula For a spheroid with equatorial semi-major axis a and polar semi-minor axis c, the angular velocity \Omega about c is given by Maclaurin's formulaChandrasekhar, Subrahmanyan. Ellipsoidal figures of equilibrium. Vol. 10. New Haven: Yale University Press, 1969. :\frac = \frac(3-2e^2) \sin^e - \frac(1-e^2), \quad e^2 = 1-\frac, where e is the eccentricity of meridional cross-sections of the spher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eccentricity (mathematics)
In mathematics, the eccentricity of a Conic section#Eccentricity, conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: * The eccentricity of a circle is 0. * The eccentricity of a non-circular ellipse is between 0 and 1. * The eccentricity of a parabola is 1. * The eccentricity of a hyperbola is greater than 1. * The eccentricity of a pair of Line (geometry), lines is \infty. Two conic sections with the same eccentricity are similarity (geometry), similar. Definitions Any conic section can be defined as the Locus (mathematics), locus of points whose distances to a point (the focus) and a line (the directrix) are in a constant ratio. That ratio is called the ''eccentricity'', commonly denoted as . The eccentricity can also be defined in terms of the intersection of a plane and a Cone (geometry), double-napped cone associated with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Astrophysics
Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline, James Keeler, said, astrophysics "seeks to ascertain the nature of the heavenly bodies, rather than their positions or motions in space—''what'' they are, rather than ''where'' they are", which is studied in celestial mechanics. Among the subjects studied are the Sun ( solar physics), other stars, galaxies, extrasolar planets, the interstellar medium, and the cosmic microwave background. Emissions from these objects are examined across all parts of the electromagnetic spectrum, and the properties examined include luminosity, density, temperature, and chemical composition. Because astrophysics is a very broad subject, ''astrophysicists'' apply concepts and methods from many disciplines of physics, including classical mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]