HOME





Cayley's Theorem
In the mathematical discipline of group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group is isomorphic to a subgroup of a symmetric group. More specifically, is isomorphic to a subgroup of the symmetric group \operatorname(G) whose elements are the permutations of the underlying set of . Explicitly, * for each g \in G, the left-multiplication-by- map \ell_g \colon G \to G sending each element to is a permutation of , and * the map G \to \operatorname(G) sending each element to \ell_g is an injective homomorphism, so it defines an isomorphism from onto a subgroup of \operatorname(G). The homomorphism G \to \operatorname(G) can also be understood as arising from the left translation action of on the underlying set . When is finite, \operatorname(G) is finite too. The proof of Cayley's theorem in this case shows that if is a finite group of order , then is isomorphic to a subgroup of the standard symmetric group S_n. But might also ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also cen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Homomorphism
In mathematics, given two groups, (''G'',∗) and (''H'', ·), a group homomorphism from (''G'',∗) to (''H'', ·) is a function ''h'' : ''G'' → ''H'' such that for all ''u'' and ''v'' in ''G'' it holds that : h(u*v) = h(u) \cdot h(v) where the group operation on the left side of the equation is that of ''G'' and on the right side that of ''H''. From this property, one can deduce that ''h'' maps the identity element ''eG'' of ''G'' to the identity element ''eH'' of ''H'', : h(e_G) = e_H and it also maps inverses to inverses in the sense that : h\left(u^\right) = h(u)^. \, Hence one can say that ''h'' "is compatible with the group structure". In areas of mathematics where one considers groups endowed with additional structure, a ''homomorphism'' sometimes means a map which respects not only the group structure (as above) but also the extra structure. For example, a homomorphism of topological groups is often required to be continuous. Properties Let e_ be the ident ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Yoneda Lemma
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type ''morphisms into a fixed object''. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It also generalizes the information-preserving relation between a term and its continuation-passing style transformation from programming language theory. It allows the embedding of any locally small category into a category of functors ( contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda. Generalities The Yoneda lemma suggests that instead of studyi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Frucht's Theorem
Frucht's theorem is a result in algebraic graph theory, conjectured by Dénes Kőnig in 1936 and mathematical proof, proved by Robert Frucht in 1939. It states that every finite group is the automorphism group, group of symmetries of a finite undirected graph. More strongly, for any finite group (mathematics), group ''G'' there exist infinitely many graph isomorphism, non-isomorphic simple graph, simple connected graph, connected graphs such that the automorphism group of each of them is group isomorphism, isomorphic to ''G''. Proof idea The main idea of the proof is to observe that the Cayley graph of ''G'', with the addition of colors and orientations on its edges to distinguish the generators of ''G'' from each other, has the desired automorphism group. Therefore, if each of these edges is replaced by an appropriate subgraph, such that each replacement subgraph is itself asymmetric and two replacements are isomorphic if and only if they replace edges of the same color, then the u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birkhoff's Representation Theorem
:''This is about lattice theory. For other similarly named results, see Birkhoff's theorem (other).'' In mathematics, Birkhoff's representation theorem for distributive lattices states that the elements of any finite distributive lattice can be represented as finite sets, in such a way that the lattice operations correspond to unions and intersections of sets. Here, a lattice is an abstract structure with two binary operations, the "meet" and "join" operations, which must obey certain axioms; it is distributive if these two operations obey the distributive law. The union and intersection operations, in a family of sets that is closed under these operations, automatically form a distributive lattice, and Birkhoff's representation theorem states that (up to isomorphism) every finite distributive lattice can be formed in this way. It is named after Garrett Birkhoff, who published a proof of it in 1937.. The theorem can be interpreted as providing a one-to-one correspondenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wagner–Preston Theorem
In group theory, an inverse semigroup (occasionally called an inversion semigroup) ''S'' is a semigroup in which every element ''x'' in ''S'' has a unique ''inverse'' ''y'' in ''S'' in the sense that and , i.e. a regular semigroup in which every element has a unique inverse. Inverse semigroups appear in a range of contexts; for example, they can be employed in the study of partial symmetries. (The convention followed in this article will be that of writing a function on the right of its argument, e.g. ''x'' ''f'' rather than ''f''(''x''), and composing functions from left to right—a convention often observed in semigroup theory.) Origins Inverse semigroups were introduced independently by Viktor Vladimirovich Wagner in the Soviet Union in 1952, and by Gordon Preston in the United Kingdom in 1954. Both authors arrived at inverse semigroups via the study of partial bijections of a set: a partial transformation ''α'' of a set ''X'' is a function from ''A'' to ''B'', wher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Core (group)
In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group (mathematics), group. The two most common types are the normal core of a subgroup and the ''p''-core of a group. The normal core Definition For a group ''G'', the normal core or normal interiorRobinson (1996) p.16 of a subgroup ''H'' is the largest normal subgroup of ''G'' that is contained in ''H'' (or equivalently, the intersection (set theory), intersection of the conjugate (group theory), conjugates of ''H''). More generally, the core of ''H'' with respect to a subset ''S'' ⊆ ''G'' is the intersection of the conjugates of ''H'' under ''S'', i.e. :\mathrm_S(H) := \bigcap_. Under this more general definition, the normal core is the core with respect to ''S'' = ''G''. The normal core of any normal subgroup is the subgroup itself. Dual to the concept of normal core is that of which is the smallest normal subgroup of ''G'' containing ''H''. Signific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dihedral Group Of Order 6
In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree (permutation group), degree 3 and Order of a group, order 6. It equals the symmetric group S3. It is also the smallest non-abelian group.. For the identification of D3 with S3, and the observation that this group is the smallest possible non-abelian group, sep. 49 This page illustrates many group concepts using this group as example. Symmetries of an equilateral triangle The dihedral group D3 is the symmetry group of an equilateral triangle, that is, it is the set of all rigid transformations (reflections, rotations, and combinations of these) that leave the shape and position of this triangle fixed. In the case of D3, every possible permutation of the triangle's vertices constitutes such a transformation, so that the group of these symmetries is isomorphic to the symmetric group S3 of all permutations of three distinct elements. This is not the case for dihedral groups of higher or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Klein Four-group
In mathematics, the Klein four-group is an abelian group with four elements, in which each element is Involution (mathematics), self-inverse (composing it with itself produces the identity) and in which composing any two of the three non-identity elements produces the third one. It can be described as the symmetry group of a non-square rectangle (with the three non-identity elements being horizontal reflection, vertical reflection and 180-degree rotation), as the group of bitwise operation, bitwise exclusive or, exclusive-or operations on two-bit binary values, or more abstract algebra, abstractly as \mathbb_2\times\mathbb_2, the Direct product of groups, direct product of two copies of the cyclic group of Order (group theory), order 2 by the Fundamental theorem of finitely generated abelian groups, Fundamental Theorem of Finitely Generated Abelian Groups. It was named ''Vierergruppe'' (, meaning four-group) by Felix Klein in 1884. It is also called the Klein group, and is often ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation
In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first meaning is the six permutations (orderings) of the set : written as tuples, they are (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Anagrams of a word whose letters are all different are also permutations: the letters are already ordered in the original word, and the anagram reorders them. The study of permutations of finite sets is an important topic in combinatorics and group theory. Permutations are used in almost every branch of mathematics and in many other fields of science. In computer science, they are used for analyzing sorting algorithms; in quantum physics, for describing states of particles; and in biology, for describing RNA sequences. The number of permutations of distinct objects is  factorial, us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coset
In mathematics, specifically group theory, a subgroup of a group may be used to decompose the underlying set of into disjoint, equal-size subsets called cosets. There are ''left cosets'' and ''right cosets''. Cosets (both left and right) have the same number of elements (cardinality) as does . Furthermore, itself is both a left coset and a right coset. The number of left cosets of in is equal to the number of right cosets of in . This common value is called the index of in and is usually denoted by . Cosets are a basic tool in the study of groups; for example, they play a central role in Lagrange's theorem that states that for any finite group , the number of elements of every subgroup of divides the number of elements of . Cosets of a particular type of subgroup (a normal subgroup) can be used as the elements of another group called a quotient group or factor group. Cosets also appear in other areas of mathematics such as vector spaces and error-correcting code ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Derangements
In combinatorics, combinatorial mathematics, a derangement is a permutation of the elements of a set (mathematics), set in which no element appears in its original position. In other words, a derangement is a permutation that has no fixed point (mathematics), fixed points. The number of derangements of a set of size is known as the subfactorial of or the derangement number or de Montmort number (after Pierre Remond de Montmort). Notations for subfactorials in common use include , , , or  . For , the subfactorial equals the nearest integer to , where denotes the factorial of and is Euler's number. The problem of counting derangements was first considered by Pierre Raymond de Montmort in his ''Essay d'analyse sur les jeux de hazard'' in 1708; he solved it in 1713, as did Nicolaus I Bernoulli, Nicholas Bernoulli at about the same time. Example Suppose that a professor gave a test to 4 students – A, B, C, and D – and wants to let them grade each other's tests. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]