Cauchy–Davenport Theorem
   HOME





Cauchy–Davenport Theorem
In additive number theory and combinatorics, a restricted sumset has the form :S=\, where A_1,\ldots,A_n are finite nonempty subsets of a field ''F'' and P(x_1,\ldots,x_n) is a polynomial over ''F''. If P is a constant non-zero function, for example P(x_1,\ldots,x_n)=1 for any x_1,\ldots,x_n, then S is the usual sumset A_1+\cdots+A_n which is denoted by nA if A_1=\cdots=A_n=A. When :P(x_1,\ldots,x_n) = \prod_ (x_j-x_i), ''S'' is written as A_1\dotplus\cdots\dotplus A_n which is denoted by n^ A if A_1=\cdots=A_n=A. Note that , ''S'', > 0 if and only if there exist a_1\in A_1,\ldots,a_n\in A_n with P(a_1,\ldots,a_n)\not=0. Cauchy–Davenport theorem The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime ''p'' and nonempty subsets ''A'' and ''B'' of the prime order cyclic group \mathbb/p\mathbb we have the inequalityGeroldinger & Ruzsa (2009) pp.141–142 :, A+B, \ge \min\ where A+B := \, i.e. we're using m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Principal objects of study include the sumset of two subsets and of elements from an abelian group , :A + B = \, and the -fold sumset of , :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of from the structure of : for example, determining which elements can be represented as a sum from , where ' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that contains all even numbers greater than two, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless quantity, number without units, in which case it is known as a numerical factor. It may also be a constant (mathematics), constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any mathematical expression, expression (including Variable (mathematics), variables such as , and ). When the combination of variables and constants is not necessarily involved in a product (mathematics), product, it may be called a ''parameter''. For example, the polynomial 2x^2-x+3 has coefficients 2, −1, and 3, and the powers of the variable x in the polynomial ax^2+bx+c have coefficient parameters a, b, and c. A , also known as constant term or simply constant, is a quantity either implicitly attach ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatorics, Probability And Computing
''Combinatorics, Probability and Computing'' is a peer-reviewed scientific journal in mathematics published by Cambridge University Press. Its editor-in-chief is Béla Bollobás ( DPMMS and University of Memphis). History The journal was established by Bollobás in 1992. Fields Medalist Timothy Gowers calls it "a personal favourite" among combinatorics journals and writes that it "maintains a high standard". Content The journal covers combinatorics, probability theory, and theoretical computer science. Currently, it publishes six issues annually. As with other journals from the same publisher, it follows a hybrid green/gold open access policy, in which authors may either place copies of their papers in an institutional repository after a six-month embargo period, or pay an open access charge to make their papers free to read on the journal's website. Abstracting and indexing The journal is abstracted and indexed in: According to the ''Journal Citation Reports'', the journal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinalities
In mathematics, the cardinality of a finite set is the number of its elements, and is therefore a measure of size of the set. Since the discovery by Georg Cantor, in the late 19th century, of different sizes of infinite sets, the term ''cardinality'' was coined for generalizing to infinite sets the concept of the number of elements. More precisely, two sets have the same cardinality if there exists a one-to-one correspondence between them. In the case of finite sets, the common operation of ''counting'' consists of establishing a one-to-one correspondence between a given set and the set of the first natural numbers, for some natural number . In this case, is the cardinality of the set. A set is ''infinite'' if the counting operation never finishes, that is, if its cardinality is not a natural number. The basic example of an infinite set is the set of all natural numbers. The great discovery of Cantor is that infinite sets of apparently different size may have the same cardina ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Israel Journal Of Mathematics
'' Israel Journal of Mathematics'' is a peer-reviewed mathematics journal published by the Hebrew University of Jerusalem ( Magnes Press). History Founded in 1963, as a continuation of the ''Bulletin of the Research Council of Israel'' (Section F), the journal publishes articles on all areas of mathematics. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.70, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... was 0.754. External links * Mathematics journals Academic journals established in 1963 Academic journals of Israel English-language journals Bimonthly journals Hebrew University of Jerusalem {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acta Arithmetica
''Acta Arithmetica'' is a scientific journal of mathematics publishing papers on number theory. It was established in 1935 by Salomon Lubelski and Arnold Walfisz. The journal is published by the Institute of Mathematics of the Polish Academy of Sciences. References External links Online archives
(Library of Science, Issues: 1935–2000) 1935 establishments in Poland Number theory journals Academic journals established in 1935 Polish Academy of Sciences academic journals Biweekly journals Academic journals associated with learned and professional societies {{math-journal-stub English-language journals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zhi-Wei Sun
Sun Zhiwei (, born October 16, 1965) is a Chinese mathematician, working primarily in number theory, combinatorics, and group theory. He is a professor at Nanjing University. Biography Sun Zhiwei was born in Huai'an, Jiangsu. Sun and his twin brother Sun Zhihong proved a theorem about what are now known as the Wall–Sun–Sun primes. Sun proved Sun's curious identity in 2002. In 2003, he presented a unified approach to three topics of Paul Erdős in combinatorial number theory: covering system In mathematics, a covering system (also called a complete residue system) is a collection :\ of finitely many residue classes : a_i\pmod = \, whose union contains every integer. Examples and definitions The notion of covering system was i ...s, restricted sumsets, and zero-sum problems or EGZ Theorem. With Stephen Redmond, he posed the Redmond–Sun conjecture in 2006. In 2013, he published a paper containing many conjectures on primes, one of which states that for any ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Imre Z
Imre () is a Hungarian masculine first name, which is also in Estonian use, where the corresponding name day is 10 April. It has been suggested that it relates to the name Emeric, Emmerich or Heinrich. Its English equivalents are Emery and Henry. Bearers of the name include the following (who generally held Hungarian nationality, unless otherwise noted): * Imre Antal (1935–2008), pianist * Imre Bajor (1957–2014), actor * Imre Bebek (d. 1395), baron * Imre Bródy (1891–1944), physicist * Imre Bujdosó (b. 1959), Olympic fencer * Imre Csáky (cardinal) (1672–1732), Roman Catholic cardinal * Imre Csermelyi (b. 1988), football player *Imre Cseszneky (1804–1874), agriculturist and patriot * Imre Csiszár (b. 1938), mathematician * Imre Csösz (b. 1969), Olympic judoka * Imre Czobor (1520–1581), Noble and statesman *Imre Czomba (b. 1972), Composer and musician * Imre Deme (b. 1983), football player * Imre Erdődy (1889–1973), Olympic gymnast * Imre Farkas (1879–1976 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noga Alon
Noga Alon (; born 1956) is an Israeli mathematician and a professor of mathematics at Princeton University noted for his contributions to combinatorics and theoretical computer science, having authored hundreds of papers. Education and career Alon was born in 1956 in Haifa, where he graduated from the Hebrew Reali School in 1974. He graduated summa cum laude from the Technion – Israel Institute of Technology in 1979, earned a master's degree in mathematics in 1980 from Tel Aviv University, and received his Ph.D. in Mathematics at the Hebrew University of Jerusalem in 1983 with the dissertation ''Extremal Problems in Combinatorics'' supervised by Micha Perles. After postdoctoral research at the Massachusetts Institute of Technology he returned to Tel Aviv University as a senior lecturer in 1985, obtained a permanent position as an associate professor there in 1986, and was promoted to full professor in 1988. He was head of the School of Mathematical Science from 1999 to 2001, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]