Cameron–Erdős Conjecture
   HOME





Cameron–Erdős Conjecture
In combinatorics, the Cameron–Erdős conjecture (now a theorem) is the statement that the number of sum-free sets contained in = \ is O\big(\big). The sum of two odd numbers is even, so a set of odd numbers is always sum-free. There are \lceil N/2\rceil odd numbers in 'N'' and so 2^ subsets of odd numbers in 'N'' The Cameron–Erdős conjecture says that this counts a constant proportion of the sum-free sets. The conjecture was stated by Peter Cameron and Paul Erdős Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, g ... in 1988. It was proved by Ben Green and independently by Alexander Sapozhenko. in 2003. See also * Erdős conjecture Notes Additive number theory Combinatorics Theorems in discrete mathematics Paul Erdős Conjectures that have been proved {{co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sum-free Set
In additive combinatorics and number theory, a subset ''A'' of an abelian group ''G'' is said to be sum-free if the sumset ''A'' + ''A'' is disjoint from ''A''. In other words, ''A'' is sum-free if the equation a + b = c has no solution with a,b,c \in A. For example, the set of odd numbers is a sum-free subset of the integers, and the set forms a large sum-free subset of the set . Fermat's Last Theorem is the statement that, for a given integer ''n'' > 2, the set of all nonzero ''n''th powers of the integers is a sum-free set. Some basic questions that have been asked about sum-free sets are: * How many sum-free subsets of are there, for an integer ''N''? Ben Green has shown that the answer is O(2^), as predicted by the Cameron–Erdős conjecture. * How many sum-free sets does an abelian group ''G'' contain?Ben Green and Imre RuzsaSum-free sets in abelian groups 2005. * What is the size of the largest sum-free set that an abelian group ''G'' contains? A sum-free set is sa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the Property (mathematics), property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not.. For example, −4, 0, and 82 are even numbers, while −3, 5, 23, and 69 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers with decimals or fractions like 1/2 or 4.6978. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even—as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subset
In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ''B''. The relationship of one set being a subset of another is called inclusion (or sometimes containment). ''A'' is a subset of ''B'' may also be expressed as ''B'' includes (or contains) ''A'' or ''A'' is included (or contained) in ''B''. A ''k''-subset is a subset with ''k'' elements. When quantified, A \subseteq B is represented as \forall x \left(x \in A \Rightarrow x \in B\right). One can prove the statement A \subseteq B by applying a proof technique known as the element argument:Let sets ''A'' and ''B'' be given. To prove that A \subseteq B, # suppose that ''a'' is a particular but arbitrarily chosen element of A # show that ''a'' is an element of ''B''. The validity of this technique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's conjecture (now a theorem, proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Resolution of conjectures Proof Formal mathematics is based on ''provable'' truth. In mathematics, any number of cases supporting a universally quantified conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 101 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Peter Cameron (mathematician)
Peter Jephson Cameron Fellow of the Royal Society of Edinburgh, FRSE (born 23 January 1947) is an Australian mathematician who works in group theory, combinatorics, coding theory, and model theory. He is currently Emeritus Professor at the University of St Andrews and Queen Mary University of London. Education Cameron received a B.Sc. from the University of Queensland and a D.Phil. in 1971 from the University of Oxford as a Rhodes Scholarship, Rhodes Scholar, with Peter M. Neumann as his supervisor. Subsequently, he was a Junior Research Fellow and later a Tutorial Fellow at Merton College, Oxford, and also lecturer at Bedford College, London, Bedford College, London. Work Cameron specialises in algebra and combinatorics; he has written books about combinatorics, algebra, permutation groups, and logic, and has produced over 350 academic papers. In 1988, he posed the Cameron–Erdős conjecture with Paul Erdős. Honours and awards He was awarded the London Mathematical Soci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Proof
A mathematical proof is a deductive reasoning, deductive Argument-deduction-proof distinctions, argument for a Proposition, mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning that establish logical certainty, to be distinguished from empirical evidence, empirical arguments or non-exhaustive inductive reasoning that establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in ''all'' possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ben J
New Boyz were an American hip hop duo consisting of rappers Earl "Ben J" Benjamin (born October 13, 1991) and Dominic "Legacy" Thomas (born October 12, 1991) They debuted in the spring of 2009 with their viral hit " You're a Jerk" taken from their 2009 debut studio album '' Skinny Jeanz and a Mic''. The song peaked in the top thirty of the ''Billboard'' Hot 100, and it was the first song to bring the jerkin' style to the national forefront. A second single, " Tie Me Down" featuring Ray J, was also successful and peaked in the top thirty in early 2010. In May 2011, their second and final studio album, ''Too Cool to Care'', was released. It includes the top 40 hits " Backseat", featuring The Cataracs and Dev, and " Better with the Lights Off" featuring Chris Brown. The New Boyz have also been featured on Hot Chelle Rae's song " I Like It Like That", which peaked at No. 28 on the Hot 100. History 2005–2008: Early life and formation Benjamin and Thomas met as freshmen at ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Erdős Conjecture
Erdős, Erdos, or Erdoes is a Hungarian surname. Paul Erdős (1913–1996), Hungarian mathematician Other people with the surname * Ágnes Erdős (1950–2021), Hungarian politician * Brad Erdos (born 1990), Canadian football player * Éva Erdős (born 1964), Hungarian handball player * Mary Callahan Erdoes (born 1967), American banker * Richárd Erdős (1881–1912), Hungarian opera singer, father of Richard * Richard Erdoes (1912–2008), Hungarian-Austrian born American artist * Sándor Erdős (born 1947), Hungarian fencer * Thomas Erdos (born 1965), Brazilian auto racing driver * Todd Erdos (born 1973), American baseball player * Viktor Erdős (born 1987), Hungarian chess grandmaster See also * Erdő * Erdődy The House of Erdődy de Monyorókerék et Monoszló (also House of Erdödy) is the name of an old Hungarian people, Hungarian-Croats, Croatian noble family with possessions in Kingdom of Hungary, Hungary and Kingdom of Croatia (Habsburg), Croati ... {{DEFAULTS ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Principal objects of study include the sumset of two subsets and of elements from an abelian group , :A + B = \, and the -fold sumset of , :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of from the structure of : for example, determining which elements can be represented as a sum from , where ' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that contains all even numbers greater than two, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]