Be Stars
   HOME



picture info

Be Stars
Be stars are a heterogeneous set of stars with B spectral types and emission lines. A narrower definition, sometimes referred to as ''classical Be stars'', is a non-supergiant B star whose spectrum has, or had at some time, one or more Balmer emission lines. Definition and classification Many stars have B-type spectra and show hydrogen emission lines, including many supergiants, Herbig Ae/Be stars, mass-transferring binary systems, and B stars. It is preferred to restrict usage of the term Be star to non-supergiant stars showing one or more Balmer series lines in emission. These are sometimes referred to as classical Be stars. The emission lines may be present only at certain times. Although the Be type spectrum is most strongly produced in class B stars, it is also detected in O and A shell stars, and these are sometimes included under the "Be star" banner. Be stars are primarily considered to be main sequence stars, but a number of subgiants and giant stars are also in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Achernar
Achernar is the brightest star in the constellation of Eridanus and the ninth-brightest in the night sky. It has the Bayer designation Alpha Eridani, which is Latinized from α Eridani and abbreviated Alpha Eri or α Eri. The name Achernar applies to the primary component of a binary system. The two components are designated Alpha Eridani A (the primary) and B (the secondary), with the latter known informally as Achernar B. As determined by the ''Hipparcos'' astrometry satellite, this system is located at a distance of approximately from the Sun. Of the ten brightest stars in the night-time sky by apparent magnitude, Alpha Eridani is the hottest and bluest in color because it is spectral type B. Achernar has an unusually rapid rotational velocity, causing it to become oblate in shape. The secondary is smaller, is spectral type A, and orbits Achernar at a distance of . Nomenclature ''α Eridani'' ( Latinised to ''Alpha Eridani'') is the system's Bayer designati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Subgiant
A subgiant is a star that is brighter than a normal main-sequence star of the same spectral class, but not as bright as giant stars. The term subgiant is applied both to a particular spectral luminosity class and to a stage in the evolution of a star. Yerkes luminosity class IV The term subgiant was first used in 1930 for class G and early K stars with absolute magnitudes between +2.5 and +4. These were noted as being part of a continuum of stars between obvious main-sequence stars such as the Sun and obvious giant stars such as Aldebaran, although less numerous than either the main sequence or the giant stars. The Yerkes spectral classification system is a two-dimensional scheme that uses a letter and number combination to denote the temperature of a star (e.g. A5 or M1) and a Roman numeral to indicate the luminosity relative to other stars of the same temperature. Luminosity class IV stars are the subgiants, located between main-sequence stars (luminosity class&n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Star Types
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lambda Eridani Variable
A Lambda Eridani Variable is a class of Be stars that show small amplitude variations of a few hundredths of a magnitude. The variations are highly regular with periods between 0.5 and 2.0 days, and they were initially described as periodic Be stars. Lambda Eridani is an example and the prototype. This has been ascribed to non-radial pulsations, inhomogeneous rotating discs, or the rotation of the star itself. These stars are rarely classified, or are classified incorrectly. The General Catalogue of Variable Stars The General Catalogue of Variable Stars (GCVS) is a list of variable stars in the Milky Way Galaxy. Its first edition, containing 10,820 stars, was published in 1948 by the Academy of Sciences of the USSR, edited by and Pavel Parenago. Second a ... does not have a type for λ Eridani variables, only GCAS for Gamma Cassiopeiae variables and BE for non-GCAS Be star variables. λ Eridani itself is incorrectly listed as a Beta Cephei variable. The AAVSO Internat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Catalogue Of Variable Stars
The General Catalogue of Variable Stars (GCVS) is a list of variable stars in the Milky Way Galaxy. Its first edition, containing 10,820 stars, was published in 1948 by the Academy of Sciences of the USSR, edited by and Pavel Parenago. Second and third editions were published in 1958 and 1968. The fourth edition, containing 28,435 stars, was published in three volumes in 1985–1987. Later, two more volumes were published: the fourth volume containing reference tables and the fifth volume containing extragalactic variable stars. The first release of the fifth edition (GCVS 5.1), which is periodically updated, currently contains 58,035 variable stars; it is available at the GCVS website and at the VizieR A vizier (; ; ) is a high-ranking political advisor or Minister (government), minister in the Near East. The Abbasids, Abbasid caliphs gave the title ''wazir'' to a minister formerly called ''katib'' (secretary), who was at first merely a help ... astronomical catalogue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Cassiopeiae Variable
A Gamma Cassiopeiae variable (γ Cassiopeiae variable) is a type of variable star, named for its prototype γ Cassiopeiae. Variability γ Cassiopeiae variables show irregular changes in brightness on a timescale of decades. These typically have amplitudes of the order of a magnitude. For example, γ Cassiopeiae is usually about magnitude 2.5 and has varied between magnitudes 1.6 and 3.0. The variations are associated with changes in the spectrum between normal absorption spectra and Be star spectra, often also including shell star characteristics. Pleione and γ Cassiopeiae itself are both variable stars that have intermittent shell episodes where strong shell features appear in the spectrum and the brightness increases or decreases significantly. At other times the shell is not detectable in the spectrum, and even the emission lines may disappear. The General Catalogue of Variable Stars (GCVS) categorises γ Cassiopeiae stars as eruptive variables and describes them as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angelo Secchi
Angelo Secchi (; 28 June 1818 – 26 February 1878) was an Italians, Italian Priesthood in the Catholic Church, Catholic priest and astronomer from the Regions of Italy, Italian region of Emilia-Romagna, Emilia. He was director of the observatory at the Pontifical Gregorian University (then called the Roman College) for 28 years. He was a pioneer in astronomical spectroscopy, and was one of the first scientists to state authoritatively that the Sun is a star. Biography Secchi was born in Reggio Emilia, where he studied at the Jesuit Gymnasium (school), gymnasium. At the age of 16, he entered the Society of Jesus, Jesuit Order in Rome. He continued his studies at the Roman College, and demonstrated great scientific ability. In 1839, he was appointed tutor of mathematics and physics at the college. In 1841, he became professor of physics at the Jesuit College in Loreto (AN), Loreto. In 1844, he began theology, theological studies in Rome, and was Holy Orders, ordained a priest o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Cassiopeiae
Gamma Cassiopeiae, Latinized from γ Cassiopeiae, is a bright star A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ... at the center of the distinctive "W" asterism in the northern circumpolar constellation of Cassiopeia (constellation), Cassiopeia. Although it is a fairly bright star with an apparent visual magnitude of 2.47, it has no traditional Arabic or Latin name. It sometimes goes by the informal name Navi. It was observed in 1866 by Angelo Secchi, the first star ever observed with emission lines. It is now considered a Be star. Gamma Cassiopeiae is also a variable star and a multiple star system. Based upon parallax measurements made by the Hipparcos satellite, it is located at a distance of roughly 550 light-years from Earth. Together with its common-proper-moti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giant Star
A giant star has a substantially larger radius and luminosity than a main-sequence (or ''dwarf'') star of the same surface temperature. They lie above the main sequence (luminosity class V in the Yerkes spectral classification) on the Hertzsprung–Russell diagram and correspond to luminosity classes II and III. The terms ''giant'' and ''dwarf'' were coined for stars of quite different luminosity despite similar temperature or spectral type (namely K and M) by Ejnar Hertzsprung in 1905 or 1906. Giant stars have radii up to a few hundred times the Sun and luminosities over 10 times that of the Sun. Stars still more luminous than giants are referred to as supergiants and hypergiants. A hot, luminous main-sequence star may also be referred to as a giant, but any main-sequence star is properly called a dwarf, regardless of how large and luminous it is. Formation A star becomes a giant after all the hydrogen available for fusion at its core has been depleted and, as a r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Main Sequence
In astronomy, the main sequence is a classification of stars which appear on plots of stellar color index, color versus absolute magnitude, brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell. After condensation and ignition of a star, it generates thermal energy in its dense stellar core, core region through nuclear fusion of hydrogen into helium. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in hydros ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Stellar Classification
In astronomy, stellar classification is the classification of stars based on their spectral characteristics. Electromagnetic radiation from the star is analyzed by splitting it with a prism or diffraction grating into a spectrum exhibiting the rainbow of colors interspersed with spectral lines. Each line indicates a particular chemical element or molecule, with the line strength indicating the abundance of that element. The strengths of the different spectral lines vary mainly due to the temperature of the photosphere, although in some cases there are true abundance differences. The ''spectral class'' of a star is a short code primarily summarizing the ionization state, giving an objective measure of the photosphere's temperature. Most stars are currently classified under the Morgan–Keenan (MK) system using the letters ''O'', ''B'', ''A'', ''F'', ''G'', ''K'', and ''M'', a sequence from the hottest (''O'' type) to the coolest (''M'' type). Each letter class is then subdivided ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shell Star
A shell star is a star having a spectrum that shows extremely broad absorption lines, plus some very narrow absorption lines. They typically also show some emission lines, usually from the Balmer series but occasionally of other lines. The broad absorption lines are due to rapid rotation of the photosphere, the emission lines from an equatorial disk, and the narrow absorption lines are produced when the disc is seen nearly edge-on. Shell stars have spectral types O7.5 to F5, with rotation velocities of 200–300 km/s, not far from the point when the rotational acceleration would disrupt the star. Spectrum The shell stars are defined as a group by the existence of rotationally broadened photospheric spectral lines in combination with very narrow absorption lines. Emission lines are frequently present but not regarded as a defining feature. The exact spectral lines present vary to some extent: Balmer emission lines are very common, but may be weak or absent in cooler star ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]