HOME
*





Bully Algorithm
In distributed computing, the bully algorithm is a method for dynamically electing a coordinator or leader from a group of distributed computer processes. The process with the highest process ID number from amongst the non-failed processes is selected as the coordinator. Assumptions The algorithm assumes that: * the system is synchronous. * processes may fail at any time, including during execution of the algorithm. * a process fails by stopping and returns from failure by restarting. * there is a failure detector which detects failed processes. * message delivery between processes is reliable. * each process knows its own process id and address, and that of every other process. Algorithm The algorithm uses the following message types: * Election Message: Sent to announce election. * Answer (Alive) Message: Responds to the Election message. * Coordinator (Victory) Message: Sent by winner of the election to announce victory. When a process recovers from failure, or the failure d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distributed Computing
A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. Distributed computing is a field of computer science that studies distributed systems. The components of a distributed system interact with one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications. A computer program that runs within a distributed system is called a distributed program, and ''distributed programming'' is the process of writing such programs. There are many different types of implementations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leader Election
In distributed computing, leader election is the process of designating a single process as the organizer of some task distributed among several computers (nodes). Before the task has begun, all network nodes are either unaware which node will serve as the "leader" (or coordinator) of the task, or unable to communicate with the current coordinator. After a leader election algorithm has been run, however, each node throughout the network recognizes a particular, unique node as the task leader. The network nodes communicate among themselves in order to decide which of them will get into the "leader" state. For that, they need some method in order to break the symmetry among them. For example, if each node has unique and comparable identities, then the nodes can compare their identities, and decide that the node with the highest identity is the leader. The definition of this problem is often attributed to LeLann, who formalized it as a method to create a new token in a token ring net ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distributed Computing
A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another from any system. Distributed computing is a field of computer science that studies distributed systems. The components of a distributed system interact with one another in order to achieve a common goal. Three significant challenges of distributed systems are: maintaining concurrency of components, overcoming the lack of a global clock, and managing the independent failure of components. When a component of one system fails, the entire system does not fail. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications. A computer program that runs within a distributed system is called a distributed program, and ''distributed programming'' is the process of writing such programs. There are many different types of implementations for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leader Election
In distributed computing, leader election is the process of designating a single process as the organizer of some task distributed among several computers (nodes). Before the task has begun, all network nodes are either unaware which node will serve as the "leader" (or coordinator) of the task, or unable to communicate with the current coordinator. After a leader election algorithm has been run, however, each node throughout the network recognizes a particular, unique node as the task leader. The network nodes communicate among themselves in order to decide which of them will get into the "leader" state. For that, they need some method in order to break the symmetry among them. For example, if each node has unique and comparable identities, then the nodes can compare their identities, and decide that the node with the highest identity is the leader. The definition of this problem is often attributed to LeLann, who formalized it as a method to create a new token in a token ring net ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Process (computing)
In computing, a process is the instance of a computer program that is being executed by one or many threads. There are many different process models, some of which are light weight, but almost all processes (even entire virtual machines) are rooted in an operating system (OS) process which comprises the program code, assigned system resources, physical and logical access permissions, and data structures to initiate, control and coordinate execution activity. Depending on the OS, a process may be made up of multiple threads of execution that execute instructions concurrently. While a computer program is a passive collection of instructions typically stored in a file on disk, a process is the execution of those instructions after being loaded from the disk into memory. Several processes may be associated with the same program; for example, opening up several instances of the same program often results in more than one process being executed. Multitasking is a method to allow mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liveness
Properties of an execution of a computer program —particularly for concurrent and distributed systems— have long been formulated by giving ''safety properties'' ("bad things don't happen") and ''liveness properties'' ("good things do happen"). A simple example will illustrate safety and liveness. A program is totally correct with respect to a precondition P and postcondition Q if any execution started in a state satisfying P terminates in a state satisfying Q. Total correctness is a conjunction of a safety property and a liveness property: * The safety property prohibits these "bad things": executions that start in a state satisfying P and terminate in a final state that does not satisfy Q. For a program C, this safety property is usually written using the Hoare triple \ C \. * The liveness property, the "good thing", is that execution that starts in a state satisfying P terminates. Note that a ''bad thing'' is discrete, since it happens at a particular place during execution. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchronous
Synchronization is the coordination of events to operate a system in unison. For example, the conductor of an orchestra keeps the orchestra synchronized or ''in time''. Systems that operate with all parts in synchrony are said to be synchronous or ''in sync''—and those that are not are ''asynchronous''. Today, time synchronization can occur between systems around the world through satellite navigation signals and other time and frequency transfer techniques. Navigation and railways Time-keeping and synchronization of clocks is a critical problem in long-distance ocean navigation. Before radio navigation and satellite-based navigation, navigators required accurate time in conjunction with astronomical observations to determine how far east or west their vessel traveled. The invention of an accurate marine chronometer revolutionized marine navigation. By the end of the 19th century, important ports provided time signals in the form of a signal gun, flag, or dropping time ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chang And Roberts Algorithm
The Chang and Roberts algorithm is a ring-based coordinator election algorithm, employed in distributed computing. The algorithm The algorithm assumes that each process has a Unique Identification (UID) and that the processes can arrange themselves in a unidirectional ring with a communication channel going from each process to the clockwise neighbour. The two part algorithm can be described as follows: # Initially each process in the ring is marked as ''non-participant''. # A process that notices a lack of leader starts an election. It creates an ''election message'' containing its UID. It then sends this message clockwise to its neighbour. # Every time a process sends or forwards an ''election message'', the process also marks itself as a participant. # When a process receives an ''election message'' it compares the UID in the message with its own UID. ## If the UID in the election message is larger, the process unconditionally forwards the ''election message'' in a clockw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Distributed Algorithms
A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing, such as telecommunications, scientific computing, distributed information processing, and real-time process control. Standard problems solved by distributed algorithms include leader election, consensus, distributed search, spanning tree generation, mutual exclusion, and resource allocation. Distributed algorithms are a sub-type of parallel algorithm, typically executed concurrently, with separate parts of the algorithm being run simultaneously on independent processors, and having limited information about what the other parts of the algorithm are doing. One of the major challenges in developing and implementing distributed algorithms is successfully coordinating the behavior of the independent parts of the algorithm in the face of processor failures and unreliable communic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]