Bellman's Lost In A Forest Problem
Bellman's lost-in-a-forest problem is an unsolved minimization problem in geometry, originating in 1955 by the American applied mathematician Richard E. Bellman. The problem is often stated as follows: ''"A hiker is lost in a forest whose shape and dimensions are precisely known to him. What is the best path for him to follow to escape from the forest?"'' It is usually assumed that the hiker does not know the starting point or direction he is facing. The best path is taken to be the one that minimizes the worst-case distance to travel before reaching the edge of the forest. Other variations of the problem have been studied. Although non-contrived real-world applications are not apparent, the problem falls into a class of geometric optimization problems, including search strategies that are of practical importance. A bigger motivation for study has been the connection to Moser's worm problem. It was included in a list of 12 problems described by the mathematician Scott W. Willi ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a ''List of geometers, geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point (geometry), point, line (geometry), line, plane (geometry), plane, distance, angle, surface (mathematics), surface, and curve, as fundamental concepts. Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, Wiles's proof of Fermat's ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Richard E
Richard is a male given name. It originates, via Old French, from compound of the words descending from Proto-Germanic language">Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'strong in rule'. Nicknames include " Richie", " Dick", " Dickon", " Dickie", " Rich", " Rick", "Rico (name), Rico", " Ricky", and more. Richard is a common English (the name was introduced into England by the Normans), German and French male name. It's also used in many more languages, particularly Germanic, such as Norwegian, Danish, Swedish, Icelandic, and Dutch, as well as other languages including Irish, Scottish, Welsh and Finnish. Richard is cognate with variants of the name in other European languages, such as the Swedish "Rickard", the Portuguese and Spanish "Ricardo" and the Italian "Riccardo" (see comprehensive variant list below). People named Richard Multiple people with the same name * Richard Andersen (other) * ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Bulletin Of The American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. It also publishes, by invitation only, book reviews and short ''Mathematical Perspectives'' articles. History It began as the ''Bulletin of the New York Mathematical Society'' and underwent a name change when the society became national. The Bulletin's function has changed over the years; its original function was to serve as a research journal for its members. Indexing The Bulletin is indexed in Mathematical Reviews, Science Citation Index, ISI Alerting Services, CompuMath Citation Index, and Current Contents/Physical, Chemical & Earth Sciences. See also *'' Journal of the American Mathematical Society'' *'' Memoirs of the American Mathematical Society'' *'' Notices of the American Mathematical Society'' *'' Proceedings of the Ame ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
American Mathematical Monthly
''The American Mathematical Monthly'' is a peer-reviewed scientific journal of mathematics. It was established by Benjamin Finkel in 1894 and is published by Taylor & Francis on behalf of the Mathematical Association of America. It is an expository journal intended for a wide audience of mathematicians, from undergraduate students to research professionals. Articles are chosen on the basis of their broad interest and reviewed and edited for quality of exposition as well as content. The editor-in-chief An editor-in-chief (EIC), also known as lead editor or chief editor, is a publication's editorial leader who has final responsibility for its operations and policies. The editor-in-chief heads all departments of the organization and is held accoun ... is Vadim Ponomarenko ( San Diego State University). The journal gives the Lester R. Ford Award annually to "authors of articles of expository excellence" published in the journal. Editors-in-chief The following persons are or have ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Moser's Worm Problem
Moser's worm problem (also known as mother worm's blanket problem) is an unsolved problem in geometry formulated by the Austrian-Canadian mathematician Leo Moser in 1966. The problem asks for the region of smallest area that can accommodate every plane curve of length 1. Here "accommodate" means that the curve may be rotated and translated to fit inside the region. In some variations of the problem, the region is restricted to be convex. Examples For example, a circular disk of radius 1/2 can accommodate any plane curve of length 1 by placing the midpoint of the curve at the center of the disk. Another possible solution has the shape of a rhombus with vertex angles of 60° and 120° and with a long diagonal of unit length. However, these are not optimal solutions; other shapes are known that solve the problem with smaller areas. Solution properties It is not completely trivial that a minimum-area cover exists. An alternative possibility would be that there is some ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Scott W
Scott may refer to: Places Canada * Scott, Quebec, municipality in the Nouvelle-Beauce regional municipality in Quebec * Scott, Saskatchewan, a town in the Rural Municipality of Tramping Lake No. 380 * Rural Municipality of Scott No. 98, Saskatchewan United States * Scott, Arkansas * Scott, Georgia * Scott, Indiana * Scott, Louisiana * Scott, Missouri * Scott, New York * Scott, Ohio * Scott, Wisconsin (other) (several places) * Fort Scott, Kansas * Great Scott Township, St. Louis County, Minnesota * Scott Air Force Base, Illinois * Scott City, Kansas * Scott City, Missouri * Scott County (other) (various states) * Scott Mountain (other) (several places) * Scott River, in California * Scott Township (other) (several places) Elsewhere * 876 Scott, minor planet orbiting the Sun * Scott (crater), a lunar impact crater near the south pole of the Moon *Scott Conservation Park, a protected area in South Australia Lists * Scott Point (di ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Diameter Of A Set
In mathematics, the diameter of a set of points in a metric space is the largest distance between points in the set. As an important special case, the diameter of a metric space is the largest distance between any two points in the space. This generalizes the diameter of a circle, the largest distance between two points on the circle. This usage of diameter also occurs in medical terminology concerning a lesion or in geology concerning a rock. A bounded set is a set whose diameter is finite. Within a bounded set, all distances are at most the diameter. Formal definition The diameter of an object is the least upper bound (denoted "sup") of the set of all distances between pairs of points in the object. Explicitly, if S is a set of points with distances measured by a Metric (mathematics), metric \rho, the diameter is \operatorname(S) = \sup_ \rho(x, y). Of the empty set The diameter of the empty set is a matter of convention. It can be defined to be zero, -\infty, or undefined. ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Circular Sector
A circular sector, also known as circle sector or disk sector or simply a sector (symbol: ⌔), is the portion of a disk (a closed region bounded by a circle) enclosed by two radii and an arc, with the smaller area being known as the ''minor sector'' and the larger being the ''major sector''. In the diagram, is the central angle, the radius of the circle, and is the arc length of the minor sector. The angle formed by connecting the endpoints of the arc to any point on the circumference that is not in the sector is equal to half the central angle. Types A sector with the central angle of 180° is called a '' half-disk'' and is bounded by a diameter and a semicircle. Sectors with other central angles are sometimes given special names, such as quadrants (90°), sextants (60°), and octants (45°), which come from the sector being one quarter, sixth or eighth part of a full circle, respectively. Area The total area of a circle is . The area of the sector can be obtai ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
![]() |
Regular Polygon
In Euclidean geometry, a regular polygon is a polygon that is Equiangular polygon, direct equiangular (all angles are equal in measure) and Equilateral polygon, equilateral (all sides have the same length). Regular polygons may be either ''convex polygon, convex'' or ''star polygon, star''. In the limit (mathematics), limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a Line (geometry), straight line), if the edge length is fixed. General properties These properties apply to all regular polygons, whether convex or star polygon, star: *A regular ''n''-sided polygon has rotational symmetry of order ''n''. *All vertices of a regular polygon lie on a common circle (the circumscribed circle); i.e., they are concyclic points. That is, a regular polygon is a cyclic polygon. *Together with the property of equal-length sides, this implies that every regular polygon also h ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
Metric Geometry
In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), function called a metric or distance function. Metric spaces are a general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a Conceptual metaphor , metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different bra ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Discrete Geometry
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object. Discrete geometry has a large overlap with convex geometry and computational geometry, and is closely related to subjects such as finite geometry, combinatorial optimization, digital geometry, discrete differential geometry, geometric graph theory, toric geometry, and combinatorial topology. History Polyhedra and tessellations had been studied for many years by people such as Kepler and Cauchy, modern discrete geometry has its origins in the late 19th century. Early topics s ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |
|
Unsolved Problems In Geometry
Unsolved may refer to: * ''Unsolved'' (album), a 2000 album by the American band Karate * ''Unsolved'' (British TV programme), a 2004–2006 British crime documentary television programme that aired on STV in Scotland * ''Unsolved'' (South Korean TV series), a 2010 South Korean television series * ''Unsolved'' (U.S. TV series), a 2018 American television series *''Unsolved!'', a 2017 book about cryptography by Craig P. Bauer *'' Unsolved: The Boy Who Disappeared'', a 2016 online series by BBC Three *''The Unsolved'', a 1997 Japanese video game *''BuzzFeed Unsolved'', a show by BuzzFeed discussing unsolved crimes and haunted places See also *Solved (other) Solved may refer to: * Solved (TV series) * ''Solved'' (album), an album by MC Frontalot * Solved (EP), an EP by Svoy * solved game See also * Solution (other) * Resolution (other) * Unsolved (other) {{disambig ... *'' Unsolved Mysteries'', an American true crime television program t ... [...More Info...] [...Related Items...] OR: [Wikipedia] [Google] [Baidu] |