Bayesian Ridge Regression
   HOME





Bayesian Ridge Regression
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled y) '' conditional on'' observed values of the regressors (usually X). The simplest and most widely used version of this model is the ''normal linear model'', in which y given X is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated. Model setup Consider a standard linear regression problem, in which for i = 1, \ldots, n we specify the mean of the conditional distribution of y_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conditional Model
Discriminative models, also referred to as conditional models, are a class of models frequently used for statistical classification, classification. They are typically used to solve binary classification problems, i.e. assign labels, such as pass/fail, win/lose, alive/dead or healthy/sick, to existing datapoints. Types of discriminative models include logistic regression (LR), Conditional_random_field, conditional random fields (CRFs), decision trees among many others. Generative model approaches which uses a joint probability distribution instead, include naive Bayes classifiers, Gaussian mixture models, Autoencoder#Variational_autoencoder_(VAE), variational autoencoders, generative adversarial networks and others. Definition Unlike generative modelling, which studies the Joint probability distribution, joint probability P(x,y), discriminative modeling studies the P(y, x) or maps the given unobserved variable (target) x to a class label y dependent on the observed variables (tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Frequentist
Frequentist inference is a type of statistical inference based in frequentist probability, which treats “probability” in equivalent terms to “frequency” and draws conclusions from sample-data by means of emphasizing the frequency or proportion of findings in the data. Frequentist inference underlies frequentist statistics, in which the well-established methodologies of statistical hypothesis testing and confidence intervals are founded. History of frequentist statistics Frequentism is based on the presumption that statistics represent probabilistic frequencies. This view was primarily developed by Ronald Fisher and the team of Jerzy Neyman and Egon Pearson. Ronald Fisher contributed to frequentist statistics by developing the frequentist concept of "significance testing", which is the study of the significance of a measure of a statistic when compared to the hypothesis. Neyman-Pearson extended Fisher's ideas to apply to multiple hypotheses. They posed that the ratio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monte Carlo Sampling
Monte Carlo methods, or Monte Carlo experiments, are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. The underlying concept is to use randomness to solve problems that might be deterministic in principle. The name comes from the Monte Carlo Casino in Monaco, where the primary developer of the method, mathematician Stanisław Ulam, was inspired by his uncle's gambling habits. Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generating draws from a probability distribution. They can also be used to model phenomena with significant uncertainty in inputs, such as calculating the risk of a nuclear power plant failure. Monte Carlo methods are often implemented using computer simulations, and they can provide approximate solutions to problems that are otherwise intractable or too complex to analyze mathematically. Monte Carlo methods are widely used in various ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Approximate Bayesian Computation
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics that can be used to estimate the posterior distributions of model parameters. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and app ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gamma Function
In mathematics, the gamma function (represented by Γ, capital Greek alphabet, Greek letter gamma) is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function \Gamma(z) is defined for all complex numbers z except non-positive integers, and for every positive integer z=n, \Gamma(n) = (n-1)!\,.The gamma function can be defined via a convergent improper integral for complex numbers with positive real part: \Gamma(z) = \int_0^\infty t^ e^\textt, \ \qquad \Re(z) > 0\,.The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic function, holomorphic except at zero and the negative integers, where it has simple Zeros and poles, poles. The gamma function has no zeros, so the reciprocal gamma function is an entire function. In fact, the gamma function corresponds to the Mellin transform of the negative exponential functi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bayes Factors
The Bayes factor is a ratio of two competing statistical models represented by their marginal likelihood, evidence, and is used to quantify the support for one model over the other. The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the integrated (i.e., marginal) likelihood rather than the maximized likelihood. As such, both quantities only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marginal Likelihood
A marginal likelihood is a likelihood function that has been integrated over the parameter space. In Bayesian statistics, it represents the probability of generating the observed sample for all possible values of the parameters; it can be understood as the probability of the model itself and is therefore often referred to as model evidence or simply evidence. Due to the integration over the parameter space, the marginal likelihood does not directly depend upon the parameters. If the focus is not on model comparison, the marginal likelihood is simply the normalizing constant that ensures that the posterior is a proper probability. It is related to the partition function in statistical mechanics. Concept Given a set of independent identically distributed data points \mathbf=(x_1,\ldots,x_n), where x_i \sim p(x, \theta) according to some probability distribution parameterized by \theta, where \theta itself is a random variable described by a distribution, i.e. \theta \sim p(\t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Evidence
A marginal likelihood is a likelihood function that has been integrated over the parameter space. In Bayesian statistics, it represents the probability of generating the observed sample for all possible values of the parameters; it can be understood as the probability of the model itself and is therefore often referred to as model evidence or simply evidence. Due to the integration over the parameter space, the marginal likelihood does not directly depend upon the parameters. If the focus is not on model comparison, the marginal likelihood is simply the normalizing constant that ensures that the posterior is a proper probability. It is related to the partition function in statistical mechanics. Concept Given a set of independent identically distributed data points \mathbf=(x_1,\ldots,x_n), where x_i \sim p(x, \theta) according to some probability distribution parameterized by \theta, where \theta itself is a random variable described by a distribution, i.e. \theta \sim p(\the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Form (statistics)
In multivariate statistics, if \varepsilon is a vector of n random variables, and \Lambda is an n-dimensional symmetric matrix, then the scalar quantity \varepsilon^T\Lambda\varepsilon is known as a quadratic form in \varepsilon. Expectation It can be shown that :\operatorname\left varepsilon^T\Lambda\varepsilon\right\operatorname\left Lambda \Sigma\right+ \mu^T\Lambda\mu where \mu and \Sigma are the expected value and variance-covariance matrix of \varepsilon, respectively, and tr denotes the trace of a matrix. This result only depends on the existence of \mu and \Sigma; in particular, normality of \varepsilon is ''not'' required. A book treatment of the topic of quadratic forms in random variables is that of Mathai and Provost. Proof Since the quadratic form is a scalar quantity, \varepsilon^T\Lambda\varepsilon = \operatorname(\varepsilon^T\Lambda\varepsilon). Next, by the cyclic property of the trace operator, : \operatorname operatorname(\varepsilon^T\Lambda\vareps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scaled Inverse Chi-squared Distribution
The scaled inverse chi-squared distribution \psi \, \mbox \chi^2(\nu), where \psi is the scale parameter, equals the univariate inverse Wishart distribution \mathcal^(\psi,\nu) with degrees of freedom \nu. This family of scaled inverse chi-squared distributions is linked to the inverse-chi-squared distribution and to the chi-squared distribution: If X \sim \psi \, \mbox \chi^2(\nu) then X/\psi \sim \mbox \chi^2(\nu) as well as \psi/X \sim \chi^2(\nu) and 1/X \sim \psi^\chi^2(\nu) . Instead of \psi, the scaled inverse chi-squared distribution is however most frequently parametrized by the scale parameter \tau^2 = \psi/\nu and the distribution \nu \tau^2 \, \mbox \chi^2(\nu) is denoted by \mbox\chi^2(\nu, \tau^2). In terms of \tau^2 the above relations can be written as follows: If X \sim \mbox\chi^2(\nu, \tau^2) then \frac \sim \mbox \chi^2(\nu) as well as \frac \sim \chi^2(\nu) and 1/X \sim \frac\chi^2(\nu) . This family of scaled inverse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inverse-gamma Distribution
In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required. It is common among some Bayesians to consider an alternative parametrization of the normal distribution in terms of the precision, defined as the reciprocal of the variance, which allows the gamma distribution to be used directly as a conjugate prior. Other Bayesians prefer to parametrize the inverse gamma distribution differently, as a scaled inverse chi-squared distribution. Characteriza ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Posterior Distribution
The posterior probability is a type of conditional probability that results from updating the prior probability with information summarized by the likelihood via an application of Bayes' rule. From an epistemological perspective, the posterior probability contains everything there is to know about an uncertain proposition (such as a scientific hypothesis, or parameter values), given prior knowledge and a mathematical model describing the observations available at a particular time. After the arrival of new information, the current posterior probability may serve as the prior in another round of Bayesian updating. In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest posterior density interval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]