HOME





Base Change Theorems
In mathematics, the base change theorems relate the direct image and the inverse image of sheaves. More precisely, they are about the base change map, given by the following natural transformation of sheaves: :g^*(R^r f_* \mathcal) \to R^r f'_*(g'^*\mathcal) where :\begin X' & \stackrel\to & X \\ f' \downarrow & & \downarrow f \\ S' & \stackrel g \to & S \end is a Cartesian square of topological spaces and \mathcal is a sheaf on ''X''. Such theorems exist in different branches of geometry: for (essentially arbitrary) topological spaces and proper maps ''f'', in algebraic geometry for (quasi-)coherent sheaves and ''f'' proper or ''g'' flat, similarly in analytic geometry, but also for étale sheaves for ''f'' proper or ''g'' smooth. Introduction A simple base change phenomenon arises in commutative algebra when ''A'' is a commutative ring and ''B'' and ''A' ''are two ''A''-algebras. Let B' = B \otimes_A A'. In this situation, given a ''B''- module ''M'', there is an isomorph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Image Functor
In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf ''F'' defined on a topological space ''X'' and a continuous map ''f'': ''X'' → ''Y'', we can define a new sheaf ''f''∗''F'' on ''Y'', called the direct image sheaf or the pushforward sheaf of ''F'' along ''f'', such that the global sections of ''f''∗''F'' is given by the global sections of ''F''. This assignment gives rise to a functor ''f''∗ from the category of sheaves on ''X'' to the category of sheaves on ''Y'', which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme. Definition Let ''f'': ''X'' → ''Y'' be a continuous map of topological spaces, and let Sh(–) denote the category of sheaves of abelian groups on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grothendieck Spectral Sequence
In mathematics, in the field of homological algebra, the Grothendieck spectral sequence, introduced by Alexander Grothendieck in his ''Tôhoku'' paper, is a spectral sequence that computes the derived functors of the composition of two functors G\circ F, from knowledge of the derived functors of F and G. Many spectral sequences in algebraic geometry are instances of the Grothendieck spectral sequence, for example the Leray spectral sequence. Statement If F \colon\mathcal\to\mathcal and G \colon \mathcal\to\mathcal are two additive and left exact functors between abelian categories such that both \mathcal and \mathcal have enough injectives and F takes injective objects to G- acyclic objects, then for each object A of \mathcal there is a spectral sequence: :E_2^ = (^p G \circ^q F)(A) \Longrightarrow ^ (G\circ F)(A), where ^p G denotes the ''p''-th right-derived functor of G, etc., and where the arrow '\Longrightarrow' means convergence of spectral sequences. Five term exac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Invariant (mathematics)
In mathematics, an invariant is a property of a mathematical object (or a class of mathematical objects) which remains unchanged after operations or transformations of a certain type are applied to the objects. The particular class of objects and type of transformations are usually indicated by the context in which the term is used. For example, the area of a triangle is an invariant with respect to isometries of the Euclidean plane. The phrases "invariant under" and "invariant to" a transformation are both used. More generally, an invariant with respect to an equivalence relation is a property that is constant on each equivalence class. Invariants are used in diverse areas of mathematics such as geometry, topology, algebra and discrete mathematics. Some important classes of transformations are defined by an invariant they leave unchanged. For example, conformal maps are defined as transformations of the plane that preserve angles. The discovery of invariants is an import ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fundamental Group
In the mathematics, mathematical field of algebraic topology, the fundamental group of a topological space is the group (mathematics), group of the equivalence classes under homotopy of the Loop (topology), loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have Group isomorphism, isomorphic fundamental groups. The fundamental group of a topological space X is denoted by \pi_1(X). Intuition Start with a space (for example, a surface (mathematics), surface), and some point in it, and all the loops both starting and ending at this point—path (topology), paths that start at this point, wander around and eventually return to the starting point. Two loops can be combined in an obvious way: travel along the first loop, then alo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups allow many group-theoretic problems to be reduced to problems in linear algebra. In physics, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical object. More formally, a "representation" means a homomorphism from the group to the autom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Local System
In mathematics, a local system (or a system of local coefficients) on a topological space ''X'' is a tool from algebraic topology which interpolates between homology theory, cohomology with coefficients in a fixed abelian group ''A'', and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943. Local systems are the building blocks of more general tools, such as constructible sheaf, constructible and perverse sheaf, perverse sheaves. Definition Let ''X'' be a topological space. A local system (of abelian groups/Module over a ring, modules...) on ''X'' is a locally constant sheaf (of abelian groups/sheaf of modules, of modules...) on ''X''. In other words, a sheaf \mathcal is a local system if every point has an open neighborhood U such that the restricted sheaf \mathcal, _U is isomorphic to the sheafification of some constant presheaf. Equivalent definitions Path-connected spaces If ''X'' is C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Simplicial Set
In mathematics, a simplicial set is a sequence of sets with internal order structure ( abstract simplices) and maps between them. Simplicial sets are higher-dimensional generalizations of directed graphs. Every simplicial set gives rise to a "nice" topological space, known as its geometric realization. This realization consists of geometric simplices, glued together according to the rules of the simplicial set. Indeed, one may view a simplicial set as a purely combinatorial construction designed to capture the essence of a topological space for the purposes of homotopy theory. Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is equivalent to the familiar homotopy category of topological spaces. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber. Simplic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-abelian Cohomology
In mathematics, a nonabelian cohomology is any cohomology with coefficients in a nonabelian group, a sheaf of nonabelian groups or even in a topological space. If homology is thought of as the abelianization of homotopy (cf. Hurewicz theorem), then the nonabelian cohomology may be thought of as a dual of homotopy groups. Nonabelian Poincaré duality SeeNonabelian Poincare Duality (Lecture 8) See also * Stacks *Group cohomology In mathematics (more specifically, in homological algebra), group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology ... References * * {{topology-stub Cohomology theories ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-isomorphism
In homological algebra, a branch of mathematics, a quasi-isomorphism or quism is a morphism ''A'' → ''B'' of chain complexes (respectively, cochain complexes) such that the induced morphisms :H_n(A_\bullet) \to H_n(B_\bullet)\ (\text H^n(A^\bullet) \to H^n(B^\bullet)) of homology groups (respectively, of cohomology groups) are isomorphisms for all ''n''. In the theory of model categories, quasi-isomorphisms are sometimes used as the class of weak equivalences when the objects of the category are chain or cochain complexes. This results in a homology-local theory, in the sense of Bousfield localization in homotopy theory. See also * Derived category In mathematics, the derived category ''D''(''A'') of an abelian category ''A'' is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on ''A''. The construction pr ... References *Gelfand, Sergei I., Manin, Yuri I. ''Methods of Homological Alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Map
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function f : X \to Y is open if for any open set U in X, the image f(U) is open in Y. Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa. Open and closed maps are not necessarily continuous. Further, continuity is independent of openness and closedness in the general case and a continuous function may have one, both, or neither property; this fact remains true even if one restricts oneself to metric spaces. Although their definitions seem more natural, open and closed maps are much less important than continuous maps. Recall that, by definition, a function f : X \to Y is continuous if the preimage of every open set of Y is open in X. (Equivalently, if the preimage of every closed set of Y is closed in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Locally Compact Space
In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. When locally compact spaces are Hausdorff they are called locally compact Hausdorff, which are of particular interest in mathematical analysis. Formal definition Let ''X'' be a topological space. Most commonly ''X'' is called locally compact if every point ''x'' of ''X'' has a compact neighbourhood, i.e., there exists an open set ''U'' and a compact set ''K'', such that x\in U\subseteq K. There are other common definitions: They are all equivalent if ''X'' is a Hausdorff space (or preregular). But they are not equivalent in general: :1. every point of ''X'' has a compact neighbourhood. :2. every point of ''X'' has a closed compact neighbourhood. :2′. every point of ''X'' has a relatively comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a topological space is a Set (mathematics), set whose elements are called Point (geometry), points, along with an additional structure called a topology, which can be defined as a set of Neighbourhood (mathematics), neighbourhoods for each point that satisfy some Axiom#Non-logical axioms, axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a space (mathematics), mathematical space that allows for the definition of Limit (mathematics), limits, Continuous function (topology), continuity, and Connected space, connectedness. Common types ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]