B (other)
B is the second letter of the Latin alphabet. B may also refer to: Science, technology, and mathematics Astronomy * Astronomical objects in the Barnard list of dark nebulae (abbreviation B) * Latitude (''b'') in the galactic coordinate system Biology and medicine * Haplogroup B (mtDNA), a human mitochondrial DNA (mtDNA) haplogroup * Haplogroup B (Y-DNA), a Y-chromosomal DNA (Y-DNA) haplogroup * Blood type B * ATC code B ''Blood and blood forming organs'', a section of the Anatomical Therapeutic Chemical Classification System * Vitamin B * Hepatitis B * Berlin Botanical Garden and Botanical Museum, assigned the abbreviation B as a repository of herbarium specimens Computing * B (programming language) * B-Method, for computer software development * B-tree, a data structure * Bit (b) * Byte (B) * , an HTML element denoting bold text Physical and chemical quantities and units * One of the reciprocal lattice vectors (''b*'') * Breadth (''b''); see length * Impact param ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Dark Nebulae
This is a list of dark nebulae (absorption nebulae), also called "dark clouds". List * Finger of God Globule *E Nebula (Barnard 142 and 143) *Barnard 68, possibly the closest to Earth at about 400 light-years. *Le Gentil 3 *Sandqvist 111 *Sandqvist 112 *Sandqvist 150 *Sandqvist 155 *Sandqvist 157 *Sandqvist 166 *Sandqvist 169 *Sandqvist 171 *Sandqvist 178 *Bernes 157 (Sandqvist and Lindroos, SL 39-41), another close dark nebula of the Corona Australis Molecular Cloud, which includes NGC 6729 *SL 41 *LDN 43 (Cosmic Bat Nebula) *LDN 193 *LDN 206 *LDN 208 *LDN 535 *LDN 615 *LDN 621 *LDN 624 *LDN 673 *LDN 688 and LDN 687 *LDN 695 *LDN 749 *LDN 762 *LDN 763 and LDN 764 *LDN 750 *LDN 771 *LDN 780 *LDN 790 *LDN 792 *LDN 793 *LDN 794 *LDN 795 *LDN 796 *LDN 798 *LDN 866 *LDN 898 *LDN 921 *LDN 923 and LDN 924 *LDN 925 *LDN 930 *LDN 935 *LDN 940 *LDN 950 *LDN 954 *LDN 958 *LDN 972 *LDN 1010 *LDN 1020 *LDN 1066 *LDN 1073 *LDN 1083 *LDN 1105 *LDN 1109 *LDN 1139 *LDN 1141 *LDN 1142 *LDN 115 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Molality
In chemistry, molality is a measure of the amount of solute in a solution relative to a given mass of solvent. This contrasts with the definition of '' molarity'' which is based on a given volume of solution. A commonly used unit for molality is the moles per kilogram (mol/kg). A solution of concentration 1 mol/kg is also sometimes denoted as 1 molal. The unit mol/kg requires that molar mass be expressed in kg/mol, instead of the usual g/mol or kg/kmol. Definition The molality (''b''), of a solution is defined as the amount of substance (in moles) of solute, ''n''solute, divided by the mass (in kg) of the solvent, ''m''solvent: :b = \frac. In the case of solutions with more than one solvent, molality can be defined for the mixed solvent considered as a pure pseudo-solvent. Instead of mole solute per kilogram solvent as in the binary case, units are defined as mole solute per kilogram mixed solvent. Origin The term ''molality'' is formed in analogy to ''molari ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boron
Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three valence electrons for forming covalent bonds, resulting in many compounds such as boric acid, the mineral sodium borate, and the ultra-hard crystals of boron carbide and boron nitride. Boron is synthesized entirely by cosmic ray spallation and supernovas and not by stellar nucleosynthesis, so it is a low-abundance element in the Solar System and in the Earth's crust. It constitutes about 0.001 percent by weight of Earth's crust. It is concentrated on Earth by the water-solubility of its more common naturally occurring compounds, the borate minerals. These are mined industrially as evaporites, such as borax and kernite. The largest known deposits are in Turkey, the largest producer of boron minerals. Elemental boron is found in smal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Boolean Domain
In mathematics and abstract algebra, a Boolean domain is a set consisting of exactly two elements whose interpretations include ''false'' and ''true''. In logic, mathematics and theoretical computer science, a Boolean domain is usually written as , or \mathbb. The algebraic structure that naturally builds on a Boolean domain is the Boolean algebra with two elements. The initial object in the category of bounded lattices is a Boolean domain. In computer science, a Boolean variable is a variable that takes values in some Boolean domain. Some programming languages feature reserved words or symbols for the elements of the Boolean domain, for example false and true. However, many programming languages do not have a Boolean data type in the strict sense. In C or BASIC, for example, falsity is represented by the number 0 and truth is represented by the number 1 or −1, and all variables that can take these values can also take any other numerical values. Generalizations Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
B Meson
In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (), down (), strange () or charm quark (). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather '' bottomonium'', which is something else entirely. Each B meson has an antiparticle that is composed of a bottom quark and an up (), down (), strange () or charm () antiquark respectively. List of B mesons – oscillations The neutral B mesons, and , spontaneously transform into their own antiparticles and back. This phenomenon is called flavor oscillation. The existence of neutral B meson oscillations is a fundamental prediction of the Standard Model of particle physics. It has been measured in the – system to be about , and in the – system to be measured by CDF experiment at Fermilab. A first estimation of the lower an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elementary Particle
In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. The Standard Model presently recognizes seventeen distinct particles—twelve fermions and five bosons. As a consequence of flavor and color combinations and antimatter, the fermions and bosons are known to have 48 and 13 variations, respectively. Among the 61 elementary particles embraced by the Standard Model number: electrons and other leptons, quarks, and the fundamental bosons. Subatomic particles such as protons or neutrons, which contain two or more elementary particles, are known as composite particles. Ordinary matter is composed of atoms, themselves once thought to be indivisible elementary particles. The name ''atom'' comes from the Ancient Greek word ''ἄτομος'' ( atomos) which means ''indivisible'' or ''uncuttable''. Despite the theories about atoms that had existed for thousands of years, the factual existence of ato ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bottom Quark
The bottom quark, beauty quark, or b quark, is an elementary particle of the third generation. It is a heavy quark with a charge of − ''e''. All quarks are described in a similar way by electroweak interaction and quantum chromodynamics, but the bottom quark has exceptionally low rates of transition to lower-mass quarks. The bottom quark is also notable because it is a product in almost all top quark decays, and is a frequent decay product of the Higgs boson. Name and history The bottom quark was first described theoretically in 1973 by physicists Makoto Kobayashi and Toshihide Maskawa to explain CP violation. The name "bottom" was introduced in 1975 by Haim Harari. The evidence for the bottom quark was first obtained in 1977 by the Fermilab E288 experiment team led by Leon M. Lederman, when proton-nucleon collisions produced bottomonium decaying to pairs of muons. The discovery was confirmed about a year later by the PLUTO and DASP2 Collaborations at the elect ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modal Logic
Modal logic is a kind of logic used to represent statements about Modality (natural language), necessity and possibility. In philosophy and related fields it is used as a tool for understanding concepts such as knowledge, obligation, and causality, causation. For instance, in epistemic modal logic, the well-formed_formula, formula \Box P can be used to represent the statement that P is known. In deontic modal logic, that same formula can represent that P is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic modal logics treat the formula \Box P \rightarrow P as a Tautology_(logic), tautology, representing the principle that only true statements can count as knowledge. However, this formula is not a tautology in deontic modal logic, since what ought to be true can be false. Modal logics are formal systems that include unary operation, unary operators such as \Diamond and \Box, representing possibility and necessi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Decibel
The decibel (symbol: dB) is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a Power, root-power, and field quantities, power or root-power quantity on a logarithmic scale. Two signals whose level (logarithmic quantity), levels differ by one decibel have a power ratio of 101/10 (approximately ) or root-power ratio of 101/20 (approximately ). The strict original usage above only expresses a relative change. However, the word decibel has since also been used for expressing an Absolute scale, absolute value that is relative to some fixed reference value, in which case the dB symbol is often suffixed with letter codes that indicate the reference value. For example, for the reference value of 1 volt, a common suffix is "#Voltage, V" (e.g., "20 dBV"). As it originated from a need to express power ratios, two principal types of scaling of the decibel are used to provide consistency depending on whether the scaling refer ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Susceptance
In electrical engineering, susceptance () is the imaginary part of admittance (), where the real part is conductance (). The reciprocal of admittance is impedance (), where the imaginary part is reactance () and the real part is resistance (). In SI units, susceptance is measured in siemens (S). Origin The term was coined by C.P. Steinmetz in a 1894 paper. In some sources Oliver Heaviside is given credit for coining the term, or with introducing the concept under the name ''permittance''. This claim is mistaken according to Steinmetz's biographer. The term ''susceptance'' does not appear anywhere in Heaviside's collected works, and Heaviside used the term ''permittance'' to mean capacitance, not ''susceptance''. Formula The general equation defining admittance is given by Y = G + j B \, where The admittance () is the reciprocal of the impedance (), if the impedance is not zero: Y = \frac = \frac = \left( \frac \right) \left( \frac \right) = \left( \frac \right) + ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Virial Coefficient
Virial coefficients B_i appear as coefficients in the virial expansion of the pressure of a many-particle system in powers of the density, providing systematic corrections to the ideal gas law. They are characteristic of the interaction potential between the particles and in general depend on the temperature. The second virial coefficient B_2 depends only on the pair interaction between the particles, the third (B_3) depends on 2- and non-additive 3-body interactions, and so on. Derivation The first step in obtaining a closed expression for virial coefficients is a cluster expansion of the grand canonical partition function : \Xi = \sum_ = e^ Here p is the pressure, V is the volume of the vessel containing the particles, k_\text is the Boltzmann constant, T is the absolute temperature, \lambda =\exp mu/(k_\textT) is the fugacity, with \mu the chemical potential. The quantity Q_n is the canonical partition function of a subsystem of n particles: : Q_n = \operatorname e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rigid Rotor
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the ''linear rotor'' requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water (asymmetric rotor), ammonia (symmetric rotor), or methane (spherical rotor). Linear rotor The linear rigid rotor model consists of two point masses located at fixed distances from their center of mass. The fixed distance between the two masses and the values of the masses are the only characteristics of the rigid model. However, for many actual diatomics this model is too restrictive since distances are usually not completely fixed. Corrections on the rigid model can be made to compensate for small variations in the distance. Even in such a case the rigid rotor model is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |