Axioms Of Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of ''naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox), various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Venn A Intersect B
Venn is a surname and a given name. It may refer to: Given name * Venn Eyre (died 1777), Archdeacon of Carlisle, Cumbria, England * Venn Pilcher (1879–1961), Anglican bishop, writer, and translator of hymns * Venn Young (1929–1993), New Zealand politician Surname * Albert Venn (1867–1908), American lacrosse player * Anne Venn (1620s–1654), English religious radical and diarist * Blair Venn, Australian actor * Charles Venn (born 1973), British actor * Harry Venn (1844–1908), Australian politician * Henry Venn (Church Missionary Society) (1796-1873), secretary of the Church Missionary Society, grandson of Henry Venn * Henry Venn (Clapham Sect) (1725–1797), English evangelical minister * Horace Venn (1892–1953), English cricketer * John Venn (1834–1923), British logician and the inventor of Venn diagrams, son of Henry Venn the younger * John Venn (academic) (died 1687), English academic administrator * John Venn (politician) (1586–1650), English politician * John V ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Philosophy
Philosophy ('love of wisdom' in Ancient Greek) is a systematic study of general and fundamental questions concerning topics like existence, reason, knowledge, Value (ethics and social sciences), value, mind, and language. It is a rational and critical inquiry that reflects on its methods and assumptions. Historically, many of the individual sciences, such as physics and psychology, formed part of philosophy. However, they are considered separate academic disciplines in the modern sense of the term. Influential traditions in the history of philosophy include Western philosophy, Western, Islamic philosophy, Arabic–Persian, Indian philosophy, Indian, and Chinese philosophy. Western philosophy originated in Ancient Greece and covers a wide area of philosophical subfields. A central topic in Arabic–Persian philosophy is the relation between reason and revelation. Indian philosophy combines the Spirituality, spiritual problem of how to reach Enlightenment in Buddhism, enlighten ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paradoxes Of The Infinite
''Paradoxes of the Infinite'' (German title: ''Paradoxien des Unendlichen'') is a mathematical work by Bernard Bolzano on the theory of sets. It was published by a friend and student, František Přihonský, in 1851, three years after Bolzano's death. The work contained many interesting results in set theory. Bolzano expanded on the theme of Galileo's paradox, giving more examples of correspondences between the elements of an infinite set and proper subset In mathematics, a set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset ...s of infinite sets. In the work he also explained the term ''Menge'', rendered in English as "set", which he had coined and used in several works since the 1830s. References * ''Paradoxes of the Infinite''; trans. by D.A.Steele; London: Routledge, 1950 * (German original) * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernard Bolzano
Bernard Bolzano (, ; ; ; born Bernardus Placidus Johann Nepomuk Bolzano; 5 October 1781 – 18 December 1848) was a Bohemian mathematician, logician, philosopher, theologian and Catholic priest of Italian extraction, also known for his liberal views. Bolzano wrote in German, his native language. For the most part, his work came to prominence posthumously. Family Bolzano was the son of two pious Catholics. His father, Bernard Pompeius Bolzano, was an Italian who had moved to Prague, where he married Maria Cecilia Maurer who came from Prague's German-speaking family Maurer. Only two of their twelve children lived to adulthood. Career When he was ten years old, Bolzano entered the Gymnasium of the Piarists in Prague, which he attended from 1791 to 1796. Bolzano entered the University of Prague in 1796 and studied mathematics, philosophy and physics. Starting in 1800, he also began studying theology, becoming a Catholic priest in 1804. He was appointed to the new chair of p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tree Of Porphyry
In philosophy (particularly the theory of categories), the Porphyrian tree or Tree of Porphyry is a classic device for illustrating a "scale of being" (), attributed to the 3rd-century CE Greek neoplatonist philosopher and logician Porphyry, and revived through the translations of Boethius. Porphyry suggests the tree in his introduction ("") to Aristotle's Categories. Porphyry presented Aristotle's classification of categories in a way that was later adopted into tree-like diagrams of two-way divisions, which indicate that a species is defined by a genus and a differentia and that this logical process continues until the lowest species is reached, which can no longer be so defined. No illustrations or diagrams occur in editions of Porphyry's original work; diagrams were eventually made, and became associated with the scheme that Porphyry describes, following Aristotle. Porphyry's was originally written in Greek, but was translated into Latin in the early 6th century CE by Bo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive integers Some authors acknowledge both definitions whenever convenient. Sometimes, the whole numbers are the natural numbers as well as zero. In other cases, the ''whole numbers'' refer to all of the integers, including negative integers. The counting numbers are another term for the natural numbers, particularly in primary education, and are ambiguous as well although typically start at 1. The natural numbers are used for counting things, like "there are ''six'' coins on the table", in which case they are called ''cardinal numbers''. They are also used to put things in order, like "this is the ''third'' largest city in the country", which are called ''ordinal numbers''. Natural numbers are also used as labels, like Number (sports), jersey ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Arbor Porphyrii (from Purchotius' Institutiones Philosophicae I, 1730)
Arbor(s) or Arbour(s) may refer to: Arts and entertainment * ''Arbor'' (installation), a 2013 public artwork in Indianapolis, Indiana, US * Arbor, a counterweight-carrying device found in theater fly systems * ''The Arbor'', a 1980 play by Andrea Dunbar; also the title of a 2010 film about Dunbar * ''The Arbor'', a 1930 play by Hermann Ungar * The Arbors, a 1960s pop group Companies * Arbor Drugs, a defunct American drug store chain based in Troy, Michigan * Arbor Networks, an American software company * Arbors Records, an American jazz record label Horticulture * Arbor (garden), a structure of trees, shrubs or vines forming a shaded space; pergola * Grove (nature), a small group of trees Places * Arbor, Missouri, US * Arbor, Nebraska, US * Arbor, Texas, or Arbor Grove, US Other uses * Arbor (tool) or mandrel * Arbour (surname) * Arbor, the central post of a fishing reel to which fishing line is attached * Arbor knot, a knot commonly used to attach fishing line to a fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consistency
In deductive logic, a consistent theory is one that does not lead to a logical contradiction. A theory T is consistent if there is no formula \varphi such that both \varphi and its negation \lnot\varphi are elements of the set of consequences of T. Let A be a set of closed sentences (informally "axioms") and \langle A\rangle the set of closed sentences provable from A under some (specified, possibly implicitly) formal deductive system. The set of axioms A is consistent when there is no formula \varphi such that \varphi \in \langle A \rangle and \lnot \varphi \in \langle A \rangle. A ''trivial'' theory (i.e., one which proves every sentence in the language of the theory) is clearly inconsistent. Conversely, in an explosive formal system (e.g., classical or intuitionistic propositional or first-order logics) every inconsistent theory is trivial. Consistency of a theory is a syntactic notion, whose semantic counterpart is satisfiability. A theory is satisfiable if it has a mod ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Number
In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and in many other branches of mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives. The set of real numbers, sometimes called "the reals", is traditionally denoted by a bold , often using blackboard bold, . The adjective ''real'', used in the 17th century by René Descartes, distinguishes real numbers from imaginary numbers such as the square roots of . The real numbers include the rational numbers, such as the integer and the fraction . The rest of the real numbers are called irrational numbers. Some irrational numbers (as well as all the rationals) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Philosophy Of Mathematics
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathematical objects are purely abstract entities or are in some way concrete, and in what the relationship such objects have with physical reality consists. Major themes that are dealt with in philosophy of mathematics include: *''Reality'': The question is whether mathematics is a pure product of human mind or whether it has some reality by itself. *''Logic and rigor'' *''Relationship with physical reality'' *''Relationship with science'' *''Relationship with applications'' *''Mathematical truth'' *''Nature as human activity'' (science, the arts, art, game, or all together) Major themes Reality Logic and rigor Mathematical reasoning requires Mathematical rigor, rigor. This means that the definitions must be absolutely unambiguous and th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |